
Dawn Song

 Vulnerability Analysis (IV): Program
Verification

Computer Security Course. Dawn
Song
Computer Security Course. Dawn
Song

Slide credit: Vijay
D’Silva

Dawn Song

Interval Analysis: Example

err

Dawn Song

Interval Analysis: Example
toptoptoptop toptop
lenleninputinput ss

toptop[0,UNIT_MAX-
3]

[0,UNIT_MAX-
3] toptop

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX][10,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop[3,9][3,9][0,UINT_MAX-

3]
[0,UINT_MAX-

3] toptop

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[13,UINT_MAX
+2]

[13,UINT_MAX
+2]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-

3]
[0,UINT_MAX-

3] toptop[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,9][3,9]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[3,UINT_MAX+
2]

[3,UINT_MAX+
2]

Dawn Song

err

toptoptoptop toptop
lenleninputinput ss

toptop[0,UNIT_MAX-
3]

[0,UNIT_MAX-
3] toptop

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX][10,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,9][3,9]

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,UINT_MAX][3,UINT_MAX]

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[11,UINT_MAX
]

[11,UINT_MAX
]

[10,UINT_MAX-
2]

[10,UINT_MAX-
2]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[12,UINT_MAX
]

[12,UINT_MAX
]

[10,UINT_MAX-
2]

[10,UINT_MAX-
2]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop [UNIT_MAX-1,UINT_MAX-

1]
[UNIT_MAX-1,UINT_MAX-

1]
[0,UINT_MAX-

3]
[0,UINT_MAX-

3]

Dawn Song

Transformers in a Static Analyzer

A transformer (or transfer function)
is
• a function on a lattice
• that respects the order

(monotone)

Transformers
• abstract the effect of program

statements
• may lose precision

Transforme
rs

Transforme
rs

Propagati
on

Propagati
on

LatticeLattice

Static
Analyzer

Static
Analyzer

Dawn Song

(a) (b) (c)

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

Quiz: Sign Analysis Transformers

Which of the following is the right transformer for
x=x­1 ?

Answer:

din
din

f

dout
dout

C

Dawn Song

Quiz: Sign Analysis Transformers

Which of the statements below is
best represented by this
transformer?

din
din

f

dout
dout

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

x=x­2

if (x<­4)

x=­4

if (x>­4)

Answer: x=-4

Dawn Song

1 Analysis Frameworks

a Lattices

b Transformers

c Systems of Equations

d Solving Equations

Dawn Song

Programs to Equations

dout1 = f1(din1)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)
Err

Exit

Entry

1: x = 0

2: if (y==0)

3: x = x-1 4: x = x+1

5: if (y==0)

6: if (x<0)

Programs
• convenient to write
• difficult to analyze:

datatypes, loops, branches,
etc.

Systems of equations
• well-studied in mathematics
• simple compared to programs:

expressions and equalities

Dawn Song

Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if
(y==0)

3: x = x-
1

4: x =
x+1

5: if
(y==0)

6: if
(x<0)

Dawn Song

Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if
(y==0)

3: x = x-
1

4: x =
x+1

5: if
(y==0)

6: if
(x<0)

Variables represent facts at different
program points
e.g. for sign analysis, dEntry = (true, true)

Dawn Song

Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if
(y==0)

3: x = x-
1

4: x =
x+1

5: if
(y==0)

6: if
(x<0)

Variables represent facts at different
program points
e.g. for sign analysis, dEntry = (true, true)

Dawn Song

Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if
(y==0)

3: x = x-
1

4: x =
x+1

5: if
(y==0)

6: if
(x<0)

Expressions represent how data is
transformed
e.g. for sign analysis, dout1=f1((true, true)) =
(x=0, true)

Dawn Song

Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if
(y==0)

3: x = x-
1

4: x =
x+1

5: if
(y==0)

6: if
(x<0)

An equation relates the facts flowing in and out of
a basic block

Dawn Song

A static analysis equation is a set of equalities of the form

• variables di represent facts flowing in and out of basic
blocks

• expressions expi(d1, ... , dk)
• describe how data is transformed
• are composed of variables, transfer functions, meet,

join
• equations di = expi(d1, ... , dk) define how the data flowing

out of block i is obtained by transforming data flowing in

d1 =
exp1(d1, ... ,
dk)

... = ...

dk =
expk (d1, ... ,
dk)

Static Analysis Equations

Dawn Song

Equations for a Single Statement

x>=
0

x>=
0

x = x +
1;

x>0x>0

din
din

f

dout
dout

dout = f(din)

The relationship between facts that are true at
different points in a program can be encoded as
an equation.

Dawn Song

Equations for Sequential Composition

Sequential composition applies the function in
one equation to the result of a previous equation

x>0x>0

x = x -
1;

x>=
0

x>=
0

if (x >5)

x>0x>0

din1
din1

f1

dout1
dout1

f2

dout2
dout2

din2
din2

dout1 =
f1(din1

)

din2 = dout1

dout2 =
f2(din2

)

Dawn Song

Equations at Join Points

The relationship between facts that are true at
different points in a program can be encoded as
an equation.

dout1 = f1(din1)

dout2 = f2(din2)

djoin =
dout1 ⊔
dout2

dout3 = f3(djoin)

x==
0

x==
0

x = x +
1;

x>0x>0

if (x >5)

x>0x>0

x==
0

x==
0

x = x -
1;

x<0x<0

x!
=0
x!
=0

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin

Dawn Song

Equations at Join Points

The relationship between facts that are true at
different points in a program can be encoded as
an equation.

dout1 = f1(din1)

dout2 = f2(din2)

djoin =
dout1 ⊔
dout2

dout3 = f3(djoin)

x==
0

x==
0

x = x +
1;

x>0x>0

if (x >5)

x>0x>0

x==
0

x==
0

x = x -
1;

x<0x<0

x!
=0
x!
=0

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin

Dawn Song

Simplifying Equations

It is common to simplify equations by eliminating
variables related by equalities.

dout1 = f1(din1)

dout2 = f2(din2)

dout3 =
f3(dout1 ⊔
dout2)

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin

dout

1
= f1(din1)

dout

2
= f2(din2)

djoin =
dout1 ⊔
dout2

dout

3
= f3(djoin)

Dawn Song

Why Equations?

Basic Algebra

Several properties of equations are well
studied
• Existence of solutions
• How to compute solutions when they

exist
• How to approximate solutions if finding

exact solutions is too difficult

Program Analysis
Equations

By using equations, program analysis
reduces to a well known problem and
existing intuition and techniques can be
applied

dout1 = f1(din1)

dout2-f = f2-f(dout1 ⊔ dout6)

dExit = f5-f(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

x = ½ y - z

y = x + 2z + 1

z = 3x + 2y -1

Dawn Song

1 Analysis Frameworks

a Lattices

b Transformers

c Systems of Equations

d Solving Equations

Dawn Song

Solutions to Equations

A solution to the equations is a
mapping of variables to lattice
elements such that the equations
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ... ,
xk)

... = ...

xk =
expk (x1, ... ,
xk)

dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Dawn Song

Solutions to Equations

A solution to the equations is a
mapping of variables to lattice
elements such that the equations
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ...
, xk)

... = ...

xk =
expk (x1, ... ,
xk)

dout1 = f1(dEntry)

dout2-f = f2-f(dout1 ⊔ dout6)

dout2-t = f2-f (dout1 ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3 ⊔ dout4)

dout5-t = f5-t(dout3 ⊔ dout4)

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Dawn Song

The Fixed Point Theorem
A fixed point of a function is an
element satisfying

x = exp(x)
This is an equation and a fixed
point is a solution to an
equation.

x = (x1, x2, …, xk) =e.g. (dout1, dout2f,
…)
exp = (exp1, …, expk) = e.g.(f1, f2f,
…)

A solution to the equations is a
mapping of variables to lattice
elements such that the equations
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ... ,
xk)

... = ...

xk =
expk (x1, ... ,
xk)

Dawn Song

How to Solve Equations

bottom

top
Solving equations by iteration:
• Start from least element
• Apply transformers once: exp(x)
• Update all variables
• Apply transformers again:

exp(exp(x))
• Repeat until no variables

change

Issues
• wasteful updates to variables
• termination of the iteration
• termination in reasonable time

Dawn Song

Iteration Strategies

bottom

top

Round robin
 Update equations in an
apriori fixed order

Topological
order

Update equations
following the structure
of the CFG

Chaotic
Iteration

Update equations in
arbitrary order making
sure all are eventually
updated

Many more advanced strategies exist.

Dawn Song

Properties of Programs

int
max=getchar();
if (max == EOF)
 exit(0);
c = getchar();
while (c != EOF)
{
 assert(c <
max);
 c= getchar();
}

Consider this program. Some questions
that we can ask a program analyzer are:
• Is it possible to violate the assertion?
• What sequence of inputs leads to an

assertion violation?

Dawn Song

Programs and Control Flow
Graphs

int
max=getchar();
if (max == EOF)
 exit(0);
c = getchar();
while (c != EOF)
{
 assert(c <
max);
 c= getchar();
}

int max = getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Control Flow Graphs are representations of programs used
in program analyzers. The graph structure makes control
flow in a program explicit.

Dawn Song

Control Flow Unwinding
int max = getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

An unwinding of a control flow graph is a possibly infinite tree
containing every path in the graph.

Dawn Song

Executions
int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

An execution corresponds
to a path in the tree
unwinding.

Multiple executions can
traverse the same path.

A path is feasible if there
is an execution that
traverses it.

Dawn Song

Assertion Violations
int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

The question of whether
an assertion violation
exists is equivalent to
asking if one of the paths
to an error location is
feasible.

Dawn Song

Assertion Violations
int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

The question of whether an
assertion violation exists is
equivalent to asking if one of
the paths to an error location
is feasible.

Vulnerability detection
techniques attempt to find if
one such feasible path exists.

Dawn Song

Fuzzing
Fuzzing techniques feed
inputs to the system and try
to trigger a crash.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Fuzzing
Fuzzing techniques feed
inputs to the system and try
to trigger a crash. Main
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the

system?

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Fuzzing
Fuzzing techniques feed
inputs to the system and try
to trigger a crash. Main
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the

system?

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Fuzzing
Fuzzing techniques feed
inputs to the system and try
to trigger a crash. Main
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the

system?

Goal: Maximize the likelihood
that a set of inputs trigger an
error.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Symbolic Execution
Symbolic execution uses
techniques from logic to avoid
exploring the same path
multiple times.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Symbolic Execution
Symbolic execution uses
techniques from logic to avoid
exploring the same path
multiple times.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Symbolic Execution
Symbolic execution uses
techniques from logic to avoid
exploring the same path
multiple times.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

max == getchar()

&& max != EOF

&& c == getchar()

&& c != EOF

&& c >= max

The highlighted path is feasible
exactly if a certain formula is
satisfiable.

Dawn Song

Static Analysis
Static analysis techniques
do not execute the program.
They use approximations to
explore multiple paths
simultaneously.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Static Analysis
Static analysis techniques
do not execute the program.
They use approximations to
explore multiple paths
simultaneously.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Static Analysis
Static analysis techniques
do not execute the program.
They use approximations to
explore multiple paths
simultaneously.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Static Analysis
Static analysis techniques
do not execute the program.
They use approximations to
explore multiple paths
simultaneously.

int max =
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Dawn Song

Sequence of States vs. Executions

i

a[0
]

a[1
]

a[2
]

a[3
]

a[4
]

unde
f

unde
f

unde
f

unde
f

unde
f

unde
f

0

unde
f

unde
f

unde
f

unde
f

unde
f

0

0

unde
f

unde
f

unde
f

unde
f

1

0

unde
f

unde
f

unde
f

unde
f

0

0

0

unde
f

unde
f

unde
f

i=0 a[i]=0 ++i a[i]=0

0

0

unde
f

unde
f

unde
f

unde
f

2

2

unde
f

unde
f

unde
f

unde
f

4

2

4

unde
f

unde
f

unde
f

Sequence that
is not an
execution

Dawn Song

All
Executions

All State
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

All Sequences of States vs. All Executions

Program

Dawn Song

Execution leading to
an error

All
Executions

All State
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

All Sequences of States vs. All Executions

Program

Dawn Song

Execution leading to
an error

All
Executions

All State
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Underapproximation
Program

An
underapproximatio
n contains some
but not all
executions. Underapproximate analysis may conclude there is no error when
an error exists: a false negative.

Underapproximat
ion

Dawn Song

Execution leading to
an error

All
Executions

All State
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Underapproximation
Program

An
underapproximatio
n contains some
but not all
executions. Underapproximate analysis may conclude there is no error when
an error exists: a false negative. A better underapproximation
considers more executions.

Underapproximat
ion

Dawn Song

Execution leading to
an error

All State
Sequences

All
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An
overapproximation
contains
sequences that are
not executions.

Overapproximat
ion

Dawn Song

Execution leading to
an error

All State
Sequences

All
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An
overapproximation
contains
sequences that are
not executions.Overapproximate analysis may conclude there is an error when
no error exists: a false positive or false alarm.

Overapproximat
ion

False
alarm

Dawn Song

Execution leading to
an error

All State
Sequences

All
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An
overapproximation
contains
sequences that are
not executions.Overapproximate analysis may conclude there is an error when
no error exists: a false positive or false alarm. A more precise
overapproximation considers fewer sequences that are not
executions.

Overapproximat
ion

False
alarm

Dawn Song

Soundness and
Completeness

Property Definition

Soundness
If the program contains an error, the
analysis will report a warning.
“Sound for reporting correctness”

Completeness
If the analysis reports an error, the
program will contain an error.
“Complete for reporting correctness”

Note: these terms have different meaning in other
contexts

Dawn Song

Comple
te

Incompl
ete

S
o
u

n
d

U
n

s
o
u

n
d

Reports all errors
Reports no false
alarms

Reports all errors
May report false
alarmsUndecidable

May not report all
errors
May report false
alarms

May not report all
errors
Reports no false
alarms

(Ex: Symbolic Execution) (Ex: Syntactic Analysis)

(Ex: Abstract Interpretation)(Ex: Manual Program Verification)

Analysis
terminates(?)

Dawn Song

Program Verification

Dawn Song

Program Verification

• How to prove a program free of buffer
overflows?
– Precondition
– Postcondition
– Loop invariants

Dawn Song

Precondition
• Precondition for f() is an

assertion (a logical
proposition) that must hold
at input to f()
– If any precondition is not met,

f() may not behave correctly
– Callee may freely assume

obligation has been met
• The concept similarly holds

for any statement or block of
statements

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

Dawn Song

Precondition Example

• Precondition:
– fp points to a valid

location in memory
– fp points to a file
– the file that fp points to

contains at least 4
characters

– …

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
19: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

Dawn Song

Postcondition

• Postcondition for f()
– An assertion that holds when
f() returns

– f() has obligation of ensuring
condition is true when it
returns

– Caller may assume
postcondition has been
established by f()

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

Dawn Song

Postcondition Example

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!
=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

• Postcondition:
– buf contains no uppercase

letters
– (return 0) ⇒(cmd[0..3] ==

“GET “)

f(
x)
f(
x)

φ(x
)
ψ

Dawn Song

Proving Precondition ⇒
Postcondition

• Given preconditions and
postconditions
– Specifying what obligations caller has

and what caller is entitled to rely upon

• Verify: No matter how function is
called,
– if precondition is met at function’s

entrance,
– then postcondition is guaranteed to

hold upon function’s return

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

⇒

Dawn Song

Proving Precondition ⇒ Postcondition
• Basic idea:

– Write down a precondition and postcondition for every line
of code

– Use logical reasoning

• Requirement:
– Each statement’s postcondition must match (imply)

precondition of any following statement
– At every point between two statements, write down

invariant that must be true at that point
• Invariant is postcondition for preceding statement, and

precondition for next one

f(
x)
f(
x)

φ(x
)
ψ

⇒

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

Bug Fixed!

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists… f(

x)
f(
x)

φ(x
)
ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

…So assuming fp points to a file that
begins with “GET “, we want to show
that parse never goes down the false
assertion path.

…But first, we will need the concept of loop invariant.

FF
TT

TTFF

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

i = 0;i = 0;

Dawn Song

Loop Invariant and Induction
• An assertion that is true at entrance to the

loop, on any path through the code
– Must be true before every loop iteration

• Both a pre- and post-condition for the loop body

FF

TT

i = 0;i = 0;

buf[i] =
tolower(url[i]);

i++;

buf[i] =
tolower(url[i]);

i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

AA

CC

BB

φ(i
)

φ(i+1
)

φ(i) φ(i+1
)

Dawn Song

Loop Invariant and Induction
• To verify:

– Base Case: Prove true for first iteration: φ(0)
– Inductive step: Assume φ(i) at the beginning of the loop.

Prove φ(i+1) at the start of the next iteration.

φ(i) φ(i+1
)

Dawn Song

Try with our familiar example, proving that (0≤i<5) after the loop
terminates:
LOOP INVARIANT: LOOP INVARIANT: /* φ(i) = (0≤i<5) */

φ(i) φ(i+1
)

/* φ(0) = (0≤0<5) */
Base Case:

Inductive Step:

/* ⇒ (0≤i+1<5) at the end of the loop */

/* assume(0≤i<5)at the beginning of the loop */

/* for (0≤i<4), clearly (0≤i+1<5) */

/* (i=5) is not a possible case since
 that would fail the looping predicate */

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

/* ⇒ parse never fails the assertion */

Dawn Song

Function Post-/Pre-
Conditions

• For every function call, we have to verify that its
precondition will be met
– Then we can conclude its postcondition holds and use this

fact in our reasoning

• Annotating every function with pre- and post-
conditions enables modular reasoning
– Can verify function f() by looking at only its code and the

annotations on every function f() calls
• Can ignore code of all other functions and functions called

transitively

– Makes reasoning about f() an almost purely local activity

Dawn Song

Dafny
• A programming language with built-

in specification constructs.
• A static program verifier to verify the

functional correctness of programs.
• Powered by Boogie and Z3.
• Available here:

http://rise4fun.com/dafny/

Dawn Song

Documentation
• Pre-/post-conditions serve as useful documentation

– To invoke Bob’s code, Alice only has to look at pre- and
post-conditions – she doesn’t need to look at or understand
his code

• Useful way to coordinate activity between multiple
programmers:
– Each module assigned to one programmer, and pre-/post-

conditions are a contract between caller and callee
– Alice and Bob can negotiate the interface (and

responsibilities) between their code at design time

Dawn Song

Preventing Security Vulnerabilities

• Identify implicit requirements code must meet
– Must not make out-of-bounds memory accesses, deference

null pointers, etc.

• Prove that code meets these requirements
– Ex: when a pointer is dereferenced, there is an implicit

precondition that pointer is non-null and in-bounds

Dawn Song

Preventing Security
Vulnerabilities

• How easy it is to prove a certain
property of code depends on how
code is written
– Structure your code to make it easy to

prove

	Slide 1
	Interval Analysis: Example
	Interval Analysis: Example
	Slide 4
	Slide 5
	Quiz: Sign Analysis Transformers
	Quiz: Sign Analysis Transformers
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Why Equations?
	Slide 22
	Solutions to Equations
	Solutions to Equations
	The Fixed Point Theorem
	How to Solve Equations
	Iteration Strategies
	Properties of Programs
	Programs and Control Flow Graphs
	Control Flow Unwinding
	Executions
	Assertion Violations
	Assertion Violations
	Fuzzing
	Fuzzing
	Fuzzing
	Fuzzing
	Symbolic Execution
	Symbolic Execution
	Symbolic Execution
	Static Analysis
	Static Analysis
	Static Analysis
	Static Analysis
	Sequence of States vs. Executions
	All Sequences of States vs. All Executions
	All Sequences of States vs. All Executions
	Underapproximation
	Underapproximation
	Overapproximation
	Overapproximation
	Overapproximation
	Soundness and Completeness
	Slide 101
	Program Verification
	Program Verification
	Precondition
	Precondition Example
	Postcondition
	Postcondition Example
	Proving Precondition ⇒ Postcondition
	Proving Precondition ⇒ Postcondition
	Slide 110
	Slide 111
	Slide 112
	Loop Invariant and Induction
	Loop Invariant and Induction
	Slide 115
	Function Post-/Pre-Conditions
	Dafny
	Documentation
	Preventing Security Vulnerabilities
	Preventing Security Vulnerabilities

