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Interval Analysis: Example
toptoptoptop toptop
lenleninputinput ss

toptop[0,UNIT_MAX-
3]

[0,UNIT_MAX-
3] toptop

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX][10,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop[3,9][3,9][0,UINT_MAX-

3]
[0,UINT_MAX-

3] toptop

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[13,UINT_MAX
+2]

[13,UINT_MAX
+2]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-

3]
[0,UINT_MAX-

3] toptop[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,9][3,9]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[3,UINT_MAX+
2]

[3,UINT_MAX+
2]
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err

toptoptoptop toptop
lenleninputinput ss

toptop[0,UNIT_MAX-
3]

[0,UNIT_MAX-
3] toptop

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX-
1]

[10,UINT_MAX-
1]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[10,UINT_MAX][10,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop

[3,9][3,9][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,9][3,9]

[3,UINT_MAX][3,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3] [3,UINT_MAX][3,UINT_MAX]

[11,UINT_MAX][11,UINT_MAX][0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[11,UINT_MAX
]

[11,UINT_MAX
]

[10,UINT_MAX-
2]

[10,UINT_MAX-
2]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3]

[12,UINT_MAX
]

[12,UINT_MAX
]

[10,UINT_MAX-
2]

[10,UINT_MAX-
2]

[0,UINT_MAX-
3]

[0,UINT_MAX-
3] toptop [UNIT_MAX-1,UINT_MAX-

1]
[UNIT_MAX-1,UINT_MAX-

1]
[0,UINT_MAX-

3]
[0,UINT_MAX-

3]
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Transformers in a Static Analyzer

A transformer (or transfer function ) 
is  
• a function on a lattice
• that respects the order 

(monotone)

Transformers
• abstract the effect of program 

statements
• may lose precision

Transforme
rs

Transforme
rs

Propagati
on

Propagati
on

LatticeLattice

Static 
Analyzer

Static 
Analyzer
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(a) (b) (c)

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

Quiz: Sign Analysis Transformers

Which of the following is the right transformer for 
x=x­1 ?

Answer: 

din
din

f

dout
dout

C
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Quiz: Sign Analysis Transformers

Which of the statements below is 
best represented by this 
transformer? 

din
din

f

dout
dout

fals
e

fals
e

truetrue

x!
=0
x!
=0

x<
=0
x<
=0

x>
=0
x>
=0

x=
=0
x=
=0x<0x<0 x>0x>0

x=x­2

if (x<­4)

x=­4

if (x>­4)

Answer: x=-4
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1 Analysis Frameworks

a Lattices

b Transformers

c Systems of Equations

d Solving Equations
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Programs to Equations

dout1 = f1(din1)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)
Err

Exit

Entry

1: x = 0

2: if (y==0)

3: x = x-1 4: x = x+1

5: if (y==0)

6: if (x<0)

Programs
• convenient to write
• difficult to analyze: 

datatypes, loops, branches, 
etc.

Systems of equations
• well-studied in mathematics
• simple compared to programs: 

expressions and equalities
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Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if 
(y==0)

3: x = x-
1

4: x = 
x+1

5: if 
(y==0)

6: if 
(x<0)
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Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if 
(y==0)

3: x = x-
1

4: x = 
x+1

5: if 
(y==0)

6: if 
(x<0)

Variables represent facts at different 
program points
e.g. for sign analysis, dEntry = (true, true) 
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Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if 
(y==0)

3: x = x-
1

4: x = 
x+1

5: if 
(y==0)

6: if 
(x<0)

Variables represent facts at different 
program points
e.g. for sign analysis, dEntry = (true, true) 
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Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if 
(y==0)

3: x = x-
1

4: x = 
x+1

5: if 
(y==0)

6: if 
(x<0)

Expressions represent how data is 
transformed
e.g. for sign analysis, dout1=f1((true, true)) = 
(x=0, true)
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Example Static Analysis Equations
dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)

Err

Exit

Entry

1: x = 0

2: if 
(y==0)

3: x = x-
1

4: x = 
x+1

5: if 
(y==0)

6: if 
(x<0)

An equation relates the facts flowing in and out of 
a basic block 
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A static analysis equation is a set of equalities of the form 

  

• variables di  represent facts flowing in and out of basic 
blocks

• expressions expi(d1, ... , dk) 
• describe how data is transformed
• are composed of variables, transfer functions, meet, 

join
• equations di = expi(d1, ... , dk) define how the data flowing 

out of block i is obtained by transforming data flowing in

d1 =
exp1(d1, ... , 
dk)

... = ...

dk =
expk (d1, ... , 
dk)

Static Analysis Equations
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Equations for a Single Statement

x>=
0

x>=
0

x = x + 
1;

x>0x>0

din
din

f

dout
dout

dout = f(din)

The relationship between facts that are true at 
different points in a program can be encoded as 
an equation.
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Equations for Sequential Composition

Sequential composition applies the function in 
one equation to the result of a previous equation

x>0x>0

x = x - 
1;

x>=
0

x>=
0

if (x >5)

x>0x>0

din1
din1

f1

dout1
dout1

f2

dout2
dout2

din2
din2

dout1 =
f1(din1

)

din2 = dout1

dout2 =
f2(din2

)
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Equations at Join Points

The relationship between facts that are true at 
different points in a program can be encoded as 
an equation.

dout1 = f1(din1)

dout2 = f2(din2)

djoin =
dout1  ⊔ 
dout2 

dout3 = f3(djoin)

x==
0

x==
0

x = x + 
1;

x>0x>0

if (x >5)

x>0x>0

x==
0

x==
0

x = x - 
1;

x<0x<0

x!
=0
x!
=0

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin
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Equations at Join Points

The relationship between facts that are true at 
different points in a program can be encoded as 
an equation.

dout1 = f1(din1)

dout2 = f2(din2)

djoin =
dout1  ⊔ 
dout2 

dout3 = f3(djoin)

x==
0

x==
0

x = x + 
1;

x>0x>0

if (x >5)

x>0x>0

x==
0

x==
0

x = x - 
1;

x<0x<0

x!
=0
x!
=0

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin
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Simplifying Equations

It is common to simplify equations by eliminating 
variables related by equalities. 

dout1 = f1(din1)

dout2 = f2(din2)

dout3 =
f3(dout1  ⊔ 
dout2 )

din2
din2

f2

dout2
dout2

f3

dout3
dout3

din1
din1

f1

dout1
dout1

djoin
djoin

dout

1
= f1(din1)

dout

2
= f2(din2)

djoin =
dout1  ⊔ 
dout2 

dout

3
= f3(djoin)
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Why Equations?

Basic Algebra

Several properties of equations are well 
studied
• Existence of solutions
• How to compute solutions when they 

exist
• How to approximate solutions if finding 

exact solutions is too difficult

Program Analysis 
Equations

By using equations, program analysis 
reduces to a well known problem and 
existing intuition and techniques can be 
applied

dout1 = f1(din1)

dout2-f = f2-f(dout1  ⊔ dout6 )

dExit = f5-f(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

x = ½ y - z

y = x + 2z + 1

z = 3x + 2y -1
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1 Analysis Frameworks

a Lattices

b Transformers

c Systems of Equations

d Solving Equations
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Solutions to Equations

A solution  to the equations is a 
mapping of variables to lattice 
elements such that the equations 
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ... , 
xk)

... = ...

xk =
expk (x1, ... , 
xk)

dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)
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Solutions to Equations

A solution  to the equations is a 
mapping of variables to lattice 
elements such that the equations 
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ... 
, xk)

... = ...

xk =
expk (x1, ... , 
xk)

dout1 = f1(dEntry)

dout2-f = f2-f(dout1  ⊔ dout6 )

dout2-t = f2-f (dout1  ⊔ dout6)

dout3 = f3(dout2-f)

dout4 = f4(dout2-t)

dExit = f5-f(dout3   ⊔ dout4 )

dout5-t = f5-t(dout3   ⊔ dout4 )

dErr = f6-t(dout5-t)

dout6-f = f6-f(dout5-t)
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The Fixed Point Theorem
A fixed point of a function is an 
element satisfying 

x = exp(x)
This is an equation and a fixed 
point is a solution to an 
equation.

x = (x1, x2, …, xk) =e.g. (dout1, dout2f, 
…)
exp = (exp1, …, expk) = e.g.(f1, f2f, 
…)

A solution  to the equations is a 
mapping of variables to lattice 
elements such that the equations 
are satisfied.

• Does a solution exist?
• If it exists, how can we find it?

x1 =
exp1(x1, ... , 
xk)

... = ...

xk =
expk (x1, ... , 
xk)
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How to Solve Equations

bottom

top
Solving equations by iteration:
• Start from least element
• Apply transformers once: exp(x)
• Update all variables
• Apply transformers again: 

exp(exp(x))
• Repeat until no variables 

change

Issues
• wasteful updates to variables
• termination of the iteration
• termination in reasonable time
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Iteration Strategies

bottom

top

Round robin
 Update equations in an 
apriori fixed order

Topological 
order

Update equations 
following the structure 
of the CFG

Chaotic 
Iteration

Update equations in 
arbitrary order making 
sure all are eventually 
updated

Many more advanced strategies exist.
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Properties of Programs

int 
max=getchar();
if (max == EOF)
  exit(0);
c = getchar();
while (c != EOF)
{
  assert(c < 
max);
  c= getchar();
}

Consider this program. Some questions 
that we can ask a program analyzer are:
• Is it possible to violate the assertion?
• What sequence of inputs leads to an 

assertion violation?
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Programs and Control Flow 
Graphs

int 
max=getchar();
if (max == EOF)
  exit(0);
c = getchar();
while (c != EOF)
{
  assert(c < 
max);
  c= getchar();
}

int max = getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

Control Flow Graphs are representations of programs used 
in program analyzers. The graph structure makes control 
flow in a program explicit. 
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Control Flow Unwinding
int max = getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

An unwinding of a control flow graph is a possibly infinite tree
containing every path in the graph.  
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Executions
int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

An execution corresponds 
to a path in the tree 
unwinding. 

Multiple executions can 
traverse the same path.

A path is feasible if there 
is an execution that 
traverses it.
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Assertion Violations
int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

The question of whether 
an assertion violation 
exists is equivalent to 
asking if one of the paths 
to an error location is 
feasible.
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Assertion Violations
int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

The question of whether an 
assertion violation exists is 
equivalent to asking if one of 
the paths to an error location 
is feasible.

Vulnerability detection 
techniques attempt to find if 
one such feasible path exists.
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Fuzzing
Fuzzing techniques feed 
inputs to the system and try 
to trigger a crash. 

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Fuzzing
Fuzzing techniques feed 
inputs to the system and try 
to trigger a crash. Main 
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the 

system?

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Fuzzing
Fuzzing techniques feed 
inputs to the system and try 
to trigger a crash. Main 
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the 

system?

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Fuzzing
Fuzzing techniques feed 
inputs to the system and try 
to trigger a crash. Main 
questions in fuzzing
• How to generate inputs?
• How to feed inputs to the 

system?

Goal: Maximize the likelihood 
that a set of inputs trigger an 
error.

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Symbolic Execution
Symbolic execution uses 
techniques from logic to avoid 
exploring the same path 
multiple times. 

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Symbolic Execution
Symbolic execution uses 
techniques from logic to avoid 
exploring the same path 
multiple times. 

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Symbolic Execution
Symbolic execution uses 
techniques from logic to avoid 
exploring the same path 
multiple times. 

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

max == getchar()

&& max != EOF

&& c == getchar()

&& c != EOF

&& c  >= max

The highlighted path is feasible 
exactly if a certain formula is 
satisfiable.
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Static Analysis
Static analysis techniques 
do not execute the program. 
They use approximations to 
explore multiple paths 
simultaneously.

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit

ErrErr

if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ErrErr
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Static Analysis
Static analysis techniques 
do not execute the program. 
They use approximations to 
explore multiple paths 
simultaneously.

int max = 
getchar();

if (max ==EOF)

c = getchar();

if (c!= EOF)
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c = getchar();

ExitExit
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if (c!= EOF)

if (c < max)

c = getchar();

ExitExit

ExitExit
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if (c!= EOF)
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c = getchar();

ExitExit

ErrErr
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Sequence of States vs. Executions

i

a[0
]

a[1
]

a[2
]

a[3
]

a[4
]

unde
f

unde
f

unde
f

unde
f

unde
f

unde
f

0

unde
f

unde
f

unde
f

unde
f

unde
f

0

0

unde
f

unde
f

unde
f

unde
f

1

0

unde
f

unde
f

unde
f

unde
f

0

0

0

unde
f

unde
f

unde
f

i=0 a[i]=0 ++i a[i]=0

0

0

unde
f

unde
f

unde
f

unde
f

2

2

unde
f

unde
f

unde
f

unde
f

4

2

4

unde
f

unde
f

unde
f

Sequence that 
is not an 
execution
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All 
Executions

All State 
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

All Sequences of States vs. All Executions

Program
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Execution leading to 
an error

All 
Executions

All State 
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

All Sequences of States vs. All Executions

Program
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Execution leading to 
an error

All 
Executions

All State 
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Underapproximation
Program

An 
underapproximatio
n contains some 
but not all 
executions.  Underapproximate analysis may conclude there is no error when 
an error exists: a false negative. 

Underapproximat
ion



Dawn Song

Execution leading to 
an error

All 
Executions

All State 
Sequences

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Underapproximation
Program

An 
underapproximatio
n contains some 
but not all 
executions.  Underapproximate analysis may conclude there is no error when 
an error exists: a false negative. A better underapproximation 
considers more executions.

Underapproximat
ion
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Execution leading to 
an error

All State 
Sequences

All 
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An 
overapproximation 
contains 
sequences that are 
not executions.

Overapproximat
ion
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Execution leading to 
an error

All State 
Sequences

All 
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An 
overapproximation 
contains 
sequences that are 
not executions.Overapproximate analysis may conclude there is an error when 
no error exists: a false positive or false alarm. 

Overapproximat
ion

False 
alarm
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Execution leading to 
an error

All State 
Sequences

All 
Executions

1 2 1 2 1

1 2 1 2 1 3

1 2 1 3

3 3 2

Overapproximation
Program

An 
overapproximation 
contains 
sequences that are 
not executions.Overapproximate analysis may conclude there is an error when 
no error exists: a false positive or false alarm. A more precise 
overapproximation considers fewer sequences that are not 
executions.

Overapproximat
ion

False 
alarm
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Soundness and 
Completeness

Property Definition

Soundness
If the program contains an error, the 
analysis will report a warning.
“Sound for reporting correctness”

Completeness
If the analysis reports an error, the 
program will contain an error.
“Complete for reporting correctness”

Note: these terms have different meaning in other 
contexts
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Comple
te

Incompl
ete

S
o
u

n
d

U
n

s
o
u

n
d

Reports all errors
Reports no false 
alarms

Reports all errors
May report false 
alarmsUndecidable

May not report all 
errors
May report false 
alarms

May not report all 
errors
Reports no false 
alarms

(Ex: Symbolic Execution) (Ex: Syntactic Analysis)

(Ex: Abstract Interpretation)(Ex: Manual Program Verification)

Analysis 
terminates(?)
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Program Verification
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Program Verification

• How to prove a program free of buffer 
overflows?
– Precondition
– Postcondition
– Loop invariants
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Precondition
• Precondition for f() is an 

assertion (a logical 
proposition) that must hold 
at input to f()
– If any precondition is not met, 

f() may not behave correctly
– Callee may freely assume 

obligation has been met
• The concept similarly holds 

for any statement or block of 
statements

f(x)f(x)

Precondition: 
φ(x)

Postcondition:
ψ
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Precondition Example

• Precondition: 
– fp points to a valid 

location in memory
– fp points to a file
– the file that fp points to 

contains at least 4 
characters

– …

 1:int parse(FILE *fp) {
 2:  char cmd[256], *url, buf[5];
 3:  fread(cmd, 1, 256, fp);
 4:  int i, header_ok = 0;
 5:  if (cmd[0] == ‘G’)
 6:    if (cmd[1] == ‘E’)
 7:      if (cmd[2] == ‘T’)
 8:        if (cmd[3] == ‘ ’)
 9:          header_ok = 1;
10:  if (!header_ok) return -1;
11:  url = cmd + 4;
12:  i=0;
13:  while (i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’) {
14:    buf[i] = tolower(url[i]);
15:    i++;
16:  }
17:  buf[i] = ‘\0’;
18:  printf(“Location is %s\n”, buf);
19:  return 0; }

f(
x)
f(
x)

φ(x
)
ψ
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Postcondition

• Postcondition for f()
– An assertion that holds when 
f() returns

– f() has obligation of ensuring 
condition is true when it 
returns

– Caller may assume 
postcondition has been 
established by f()   

f(x)f(x)

Precondition: 
φ(x)

Postcondition:
ψ
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Postcondition Example

 1:int parse(FILE *fp) {
 2:  char cmd[256], *url, buf[5];
 3:  fread(cmd, 1, 256, fp);
 4:  int i, header_ok = 0;
 5:  if (cmd[0] == ‘G’)
 6:    if (cmd[1] == ‘E’)
 7:      if (cmd[2] == ‘T’)
 8:        if (cmd[3] == ‘ ’)
 9:          header_ok = 1;
10:  if (!header_ok) return -1;
11:  url = cmd + 4;
12:  i=0;
13:  while (i<5 && url[i]!=‘\0’ && url[i]!
=‘n’) {
14:    buf[i] = tolower(url[i]);
15:    i++;
16:  }
17:  buf[i] = ‘\0’;
18:  printf(“Location is %s\n”, buf);
18:  return 0; }

• Postcondition: 
– buf contains no uppercase 

letters
– (return 0) ⇒(cmd[0..3] == 

“GET “)

f(
x)
f(
x)

φ(x
)
ψ
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Proving Precondition ⇒ 
Postcondition

• Given preconditions and 
postconditions
– Specifying what obligations caller has 

and what caller is entitled to rely upon

• Verify: No matter how function is 
called, 
– if precondition is met at function’s 

entrance, 
– then postcondition is guaranteed to 

hold upon function’s return 

f(x)f(x)

Precondition: 
φ(x)

Postcondition:
ψ

⇒
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Proving Precondition ⇒ Postcondition
• Basic idea:

– Write down a precondition and postcondition for every line 
of code

– Use logical reasoning

• Requirement:
– Each statement’s postcondition must match (imply) 

precondition of any following statement
– At every point between two statements, write down 

invariant that must be true at that point
• Invariant is postcondition for preceding statement, and 

precondition for next one

f(
x)
f(
x)

φ(x
)
ψ

⇒
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We’ll take our example, fix the bug, and show that we can 
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2:  char cmd[256], *url, buf[5];
 3:  fread(cmd, 1, 256, fp);
 4:  int i, header_ok = 0;
 5:  if (cmd[0] == ‘G’)
 6:    if (cmd[1] == ‘E’)
 7:      if (cmd[2] == ‘T’)
 8:        if (cmd[3] == ‘ ’)
 9:          header_ok = 1;
10:  if (!header_ok) return -1;
11:  url = cmd + 4;
12:  i=0;
13:  while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’) 
{
14:    buf[i] = tolower(url[i]);
15:    i++;
16:  }
17:  assert(i>=0 && i <5);
18:  buf[i] = ‘\0’;
19:  printf(“Location is %s\n”, buf);
20:  return 0; }

f(
x)
f(
x)

φ(x
)
ψ

FF
TT

TTFF

i  =  0;i  =  0;

buf[i] = 
‘\0’;
buf[i] = 
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 



Dawn Song
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f(
x)
f(
x)

φ(x
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 1:int parse(FILE *fp) {
 2:  char cmd[256], *url, buf[5];
 3:  fread(cmd, 1, 256, fp);
 4:  int i, header_ok = 0;
 5:  if (cmd[0] == ‘G’)
 6:    if (cmd[1] == ‘E’)
 7:      if (cmd[2] == ‘T’)
 8:        if (cmd[3] == ‘ ’)
 9:          header_ok = 1;
10:  if (!header_ok) return -1;
11:  url = cmd + 4;
12:  i=0;
13:  while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’) 
{
14:    buf[i] = tolower(url[i]);
15:    i++;
16:  }
17:  assert(i>=0 && i <5);
18:  buf[i] = ‘\0’;
19:  printf(“Location is %s\n”, buf);
20:  return 0; }

FF
TT

TTFF

i  =  0;i  =  0;

buf[i] = 
‘\0’;
buf[i] = 
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

FF
TT

TTFF

i  =  0;i  =  0;

buf[i] = 
‘\0’;
buf[i] = 
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

Bug Fixed!
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We’ll take our example, fix the bug, and show that we can 
successfully prove that the bug no longer exists… f(

x)
f(
x)

φ(x
)
ψ

 1:int parse(FILE *fp) {
 2:  char cmd[256], *url, buf[5];
 3:  fread(cmd, 1, 256, fp);
 4:  int i, header_ok = 0;
 5:  if (cmd[0] == ‘G’)
 6:    if (cmd[1] == ‘E’)
 7:      if (cmd[2] == ‘T’)
 8:        if (cmd[3] == ‘ ’)
 9:          header_ok = 1;
10:  if (!header_ok) return -1;
11:  url = cmd + 4;
12:  i=0;
13:  while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’) 
{
14:    buf[i] = tolower(url[i]);
15:    i++;
16:  }
17:  buf[i] = ‘\0’;
18:  printf(“Location is %s\n”, buf);
18:  return 0; }

…So assuming fp points to a file that 
begins with “GET “, we want to show 
that parse never goes down the false 
assertion path.

…But first, we will need the concept of loop invariant.

FF
TT

TTFF

buf[i] = 
‘\0’;
buf[i] = 
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

i  =  0;i  =  0;
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Loop Invariant and Induction
• An assertion that is true at entrance to the 

loop, on any path through the code
– Must be true before every loop iteration

• Both a pre- and post-condition for the loop body

FF

TT

i  =  0;i  =  0;

buf[i]  =  
tolower(url[i]);

i++;

buf[i]  =  
tolower(url[i]);

i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

AA

CC

BB

φ(i
)

φ(i+1
)

φ(i) φ(i+1
)
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Loop Invariant and Induction
• To verify:

– Base Case: Prove true for first iteration: φ(0)
– Inductive step: Assume φ(i) at the beginning of the loop. 

Prove φ(i+1) at the start of the next iteration.

φ(i) φ(i+1
)
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Try with our familiar example, proving that (0≤i<5) after the loop 
terminates: 
LOOP INVARIANT: LOOP INVARIANT: /* φ(i) = (0≤i<5) */

φ(i) φ(i+1
)

/* φ(0) = (0≤0<5) */
Base Case:

Inductive Step:

/* ⇒ (0≤i+1<5) at the end of the loop */

/* assume(0≤i<5)at the beginning of the loop */

/* for (0≤i<4), clearly (0≤i+1<5) */

/* (i=5) is not a possible case since
   that would fail the looping predicate */

FF
TT

TTFF

i  =  0;i  =  0;

buf[i] = 
‘\0’;
buf[i] = 
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)? 

/* ⇒ parse never fails the assertion */
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Function Post-/Pre-
Conditions

• For every function call, we have to verify that its 
precondition will be met
– Then we can conclude its postcondition holds and use this 

fact in our reasoning

• Annotating every function with pre- and post-
conditions enables modular reasoning
– Can verify function f() by looking at only its code and the 

annotations on every function f() calls
• Can ignore code of all other functions and functions called 

transitively

– Makes reasoning about f() an almost purely local activity
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Dafny
• A programming language with built-

in specification constructs. 
• A static program verifier to verify the 

functional correctness of programs.
• Powered by Boogie and Z3.
• Available here: 

http://rise4fun.com/dafny/
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Documentation
• Pre-/post-conditions serve as useful documentation

– To invoke Bob’s code, Alice only has to look at pre- and 
post-conditions – she doesn’t need to look at or understand 
his code

• Useful way to coordinate activity between multiple 
programmers:
– Each module assigned to one programmer, and pre-/post-

conditions are a contract between caller and callee
– Alice and Bob can negotiate the interface (and 

responsibilities) between their code at design time
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Preventing Security Vulnerabilities

• Identify implicit requirements code must meet
– Must not make out-of-bounds memory accesses, deference 

null pointers, etc.

• Prove that code meets these requirements 
– Ex: when a pointer is dereferenced, there is an implicit 

precondition that pointer is non-null and in-bounds
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Preventing Security 
Vulnerabilities

• How easy it is to prove a certain 
property of code depends on how 
code is written
– Structure your code to make it easy to 

prove
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