
Dawn Song

 Vulnerability Analysis (IV): Program
Verification

Computer Security Course. Dawn
Song
Computer Security Course. Dawn
Song

Slide credit: Vijay
D’Silva

Dawn Song

Program Verification

Dawn Song

Program Verification

• How to prove a program free of buffer
overflows?
– Precondition
– Postcondition
– Loop invariants

Dawn Song

Precondition
• Precondition for f() is an

assertion (a logical
proposition) that must hold
at input to f()
– If any precondition is not met,

f() may not behave correctly
– Callee may freely assume

obligation has been met
• The concept similarly holds

for any statement or block of
statements

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

Dawn Song

Precondition Example

• Precondition:
– fp points to a valid

location in memory
– fp points to a file
– the file that fp points to

contains at least 4
characters

– …

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
19: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

Dawn Song

Postcondition

• Postcondition for f()
– An assertion that holds when
f() returns

– f() has obligation of ensuring
condition is true when it
returns

– Caller may assume
postcondition has been
established by f()

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

Dawn Song

Postcondition Example

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!
=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

• Postcondition:
– buf contains no uppercase

letters
– (return 0) ⇒(cmd[0..3] ==

“GET “)

f(
x)
f(
x)

φ(x
)
ψ

Dawn Song

Proving Precondition ⇒
Postcondition

• Given preconditions and
postconditions
– Specifying what obligations caller has

and what caller is entitled to rely upon

• Verify: No matter how function is
called,
– if precondition is met at function’s

entrance,
– then postcondition is guaranteed to

hold upon function’s return

f(x)f(x)

Precondition:
φ(x)

Postcondition:
ψ

⇒

Dawn Song

Proving Precondition ⇒ Postcondition
• Basic idea:

– Write down a precondition and postcondition for every line
of code

– Use logical reasoning

• Requirement:
– Each statement’s postcondition must match (imply)

precondition of any following statement
– At every point between two statements, write down

invariant that must be true at that point
• Invariant is postcondition for preceding statement, and

precondition for next one

f(
x)
f(
x)

φ(x
)
ψ

⇒

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

f(
x)
f(
x)

φ(x
)
ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

Bug Fixed!

Dawn Song

We’ll take our example, fix the bug, and show that we can
successfully prove that the bug no longer exists… f(

x)
f(
x)

φ(x
)
ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’)
{
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

…So assuming fp points to a file that
begins with “GET “, we want to show
that parse never goes down the false
assertion path.

…But first, we will need the concept of loop invariant.

FF
TT

TTFF

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

i = 0;i = 0;

Dawn Song

Loop Invariant and Induction
• An assertion that is true at entrance to the

loop, on any path through the code
– Must be true before every loop iteration

• Both a pre- and post-condition for the loop body

FF

TT

i = 0;i = 0;

buf[i] =
tolower(url[i]);

i++;

buf[i] =
tolower(url[i]);

i++;

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<5 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

AA

CC

BB

φ(i
)

φ(i+1
)

φ(i) φ(i+1
)

Dawn Song

Loop Invariant and Induction
• To verify:

– Base Case: Prove true for first iteration: φ(0)
– Inductive step: Assume φ(i) at the beginning of the loop.

Prove φ(i+1) at the start of the next iteration.

φ(i) φ(i+1
)

Dawn Song

Try with our familiar example, proving that (0≤i<5) after the loop
terminates:
LOOP INVARIANT: LOOP INVARIANT: /* φ(i) = (0≤i<5) */

φ(i) φ(i+1
)

/* φ(0) = (0≤0<5) */
Base Case:

Inductive Step:

/* ⇒ (0≤i+1<5) at the end of the loop */

/* assume(0≤i<5)at the beginning of the loop */

/* for (0≤i<4), clearly (0≤i+1<5) */

/* (i=5) is not a possible case since
 that would fail the looping predicate */

FF
TT

TTFF

i = 0;i = 0;

buf[i] =
‘\0’;
buf[i] =
‘\0’;

CRASH!CRASH!

assert(i>=0 && i<5);assert(i>=0 && i<5);

i++;i++;

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

is(i<4 && url[i]!=‘\0’ && url[i]!
=‘\n’)?

/* ⇒ parse never fails the assertion */

Dawn Song

Function Post-/Pre-
Conditions

• For every function call, we have to verify that its
precondition will be met
– Then we can conclude its postcondition holds and use this

fact in our reasoning

• Annotating every function with pre- and post-
conditions enables modular reasoning
– Can verify function f() by looking at only its code and the

annotations on every function f() calls
• Can ignore code of all other functions and functions called

transitively

– Makes reasoning about f() an almost purely local activity

Dawn Song

Dafny
• A programming language with built-

in specification constructs.
• A static program verifier to verify the

functional correctness of programs.
• Powered by Boogie and Z3.
• Available here:

http://rise4fun.com/dafny/

http://rise4fun.com/dafny/
http://rise4fun.com/dafny/

Dawn Song

Documentation
• Pre-/post-conditions serve as useful documentation

– To invoke Bob’s code, Alice only has to look at pre- and
post-conditions – she doesn’t need to look at or understand
his code

• Useful way to coordinate activity between multiple
programmers:
– Each module assigned to one programmer, and pre-/post-

conditions are a contract between caller and callee
– Alice and Bob can negotiate the interface (and

responsibilities) between their code at design time

Dawn Song

Preventing Security Vulnerabilities

• Identify implicit requirements code must meet
– Must not make out-of-bounds memory accesses, deference

null pointers, etc.

• Prove that code meets these requirements
– Ex: when a pointer is dereferenced, there is an implicit

precondition that pointer is non-null and in-bounds

Dawn Song

Preventing Security
Vulnerabilities

• How easy it is to prove a certain
property of code depends on how
code is written
– Structure your code to make it easy to

prove

Dawn Song

Security Architecture and Principles

Computer Security Course. Dawn
Song
Computer Security Course. Dawn
Song

Dawn Song

Access Control &
Capabilities

Dawn Song

Access Control
• Some resources (files, web pages, …)

are sensitive.
• How do we limit who can access

them?
• This is called the access control

problem

Dawn Song

Access Control
Fundamentals

• Subject = a user, process, …
– (someone who is accessing resources)

• Object = a file, device, web page, …
– (a resource that can be accessed)

• Policy = the restrictions we’ll enforce
• access(S, O) = true

– if subject S is allowed to access object O

Dawn Song

Access control matrix
[Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subjects

Objects

Dawn Song

Two implementation
concepts

• Access control list (ACL)
– Store column of matrix
 with the resource

• Capability
– User holds a “ticket” for
 each resource
– Two variations

• store row of matrix with user, under OS control
• unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems

Dawn Song

ACL vs Capabilities
• Access control list

– Associate list with each object
– Check user/group against list
– Relies on authentication: need to know user

• Capabilities
– Capability is unforgeable ticket

• Random bit sequence, or managed by OS
• Can be passed from one process to another

– Reference monitor checks ticket
• Does not need to know identify of user/process

Dawn Song

ACL vs Capabilities

Process P
User U

Process Q
User U

Process R
User U

Process P
Capabilty c,d,e

Process Q

Process R
Capabilty c

Capabilty c,e

Dawn Song

ACL vs Capabilities
• Delegation

– Cap: Process can pass capability at run time
– ACL: Try to get owner to add permission to list?

• More common: let other process act under current user

• Revocation
– ACL: Remove user or group from list
– Cap: Try to get capability back from process?

• Possible in some systems if appropriate bookkeeping
– OS knows which data is capability
– If capability is used for multiple resources, have to revoke all or none …

• Indirection: capability points to pointer to resource
– If C P R, then revoke capability C by setting P=0

Dawn Song

Roles (also called Groups)
• Role = set of users

– Administrator, PowerUser, User, Guest
– Assign permissions to roles; each user gets permission

• Role hierarchy
– Partial order of roles
– Each role gets

permissions of roles below
– List only new permissions
 given to each role

Administrator

Guest

PowerUser

User

Dawn Song

Role-Based Access Control
Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: user’s change more frequently than roles

Dawn Song

Reference Monitor
• A reference monitor is responsible for

mediating all access to data

• Subject cannot access data directly;
operations must go through the reference
monitor, which checks whether they are OK.

SubjectSubject Reference
Monitor

Reference
Monitor ObjectObject

Dawn Song

Criteria for a reference
monitor

Ideally, a reference monitor should be:
• Unbypassable: all accesses go through the

reference monitor (also called complete mediation)
• Tamper-resistant: attacker cannot subvert or take

control of the reference monitor (e.g., no code
injection)

• Verifiable: reference monitor should be simple
enough that it’s unlikely to have bugs

Dawn Song

Dawn Song

Non-Language-Specific Vulnerabilities

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. dispense $w to user

Dawn Song

Non-Language-Specific Vulnerabilities

// Part of a setuid program
if (access("file", W_OK) != 0) {
 exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof(buffer));

access(“file”, W_OK) Returns 0 if the user invoking the program has write
access to “file” (it checks the real uid, the actual id of the
user, as opposed to the effective uid, the id associated
with the process)

open(“file”, O_WRONLY) Returns a handle to “file” to be used for writing only

write(fd, buffer …) Writes the contents of buffer to “file”

Dawn Song

Time-of-Check-to-Time-of-Use (TOCTTOU)
// Part of a setuid program
if (access("file", W_OK) != 0) {
 exit(1);
}

access(“file”, W_OK) Returns 0 if the user invoking the program has write
access to “file” (it checks the real uid, the actual id of the
user, as opposed to the effective uid, the id associated
with the process)

open(“file”, O_WRONLY) Returns a handle to “file” to be used for writing only

write(fd, buffer …) Writes the contents of buffer to “file”
symlink(“/etc/passwd”,
“file”)

Creates a symlink from “file” to “/etc/passwd”. A symbolic
link is a reference to another file, so in this case the
attacker causes “file” (which they have privileges for) to
point to “/etc/passwd”. The program then opens
“/etc/passwd” instead of “file”.

// After the access check
symlink("/etc/passwd", "file");
// Before the open, "file"

points to the password
databasefd = open("file", O_WRONLY);

write(fd, buffer,
sizeof(buffer));

Dawn Song

The Flaw?

• Code assumes FS is unchanged between access() and
open() calls – Never assume anything…

• An attacker could change file referred to by “file” in
between access() and open()
– Eg. symlink(“/etc/passwd”, “file”)
– Bypasses the check in the code!
– Although the user does not have write privileges for
/etc/passwd, the program does (and the attacker has privileges
for file, so they are allowed to create the symbolic link)

– Time-Of-Check To Time-Of-Use (TOCTTOU) vulnerability
– Meaning of file changed from time it is checked (access())

and time it is used (open())

Dawn Song

TOCTTOU Vulnerability
• In Unix, often occurs with file system

calls because system calls are not
atomic

• But, TOCTTOU vulnerabilities can
arise anywhere there is mutable state
shared between two or more entities
– Example: multi-threaded Java servlets

and applications are at risk for TOCTTOU

Dawn Song

Minimize TCB
• The trusted computing base (TCB) is the

subset of the system that has to be correct,
for some security goal to be achieved
– Example: the TCB for enforcing file access

permissions includes the OS kernel and
filesystem drivers

• TCB of the reference monitor should be
small to make it verifiable

Dawn Song

Reference Monitor and Confinement for Running Untrusted
Code

We often need to run buggy/untrusted code:

– programs from untrusted Internet sites:

• toolbars, viewers, codecs for media player

– old or insecure applications: ghostview, outlook

– legacy daemons: sendmail, bind

– Honeypots

• Goal: ensure misbehaving app cannot harm rest of system

• Approach: Confinement

– Can be implemented at many different levels

Dawn Song

SandboxSandboxSandboxSandbox

Component 1Component 1 Component 2Component 2

Reference monitorReference monitor

Dawn Song

Confinement Examples
• Hardware: run applications on isolated hardware

(air gap)
• Firewall: isolate internal network from the Internet
• Virtual machines: isolate OS’s on a single

machine
• Processes:

– Isolate a process in an operating system
– System Call Interposition

Dawn Song

Principle of Least Privilege
• Privilege

– Ability to access or modify a resource

• Principle of Least Privilege
– A system module should only have the minimal

privileges needed for intended purposes

• Privilege separation
– Separate the system into independent modules
– Each module follows the principle of least privilege
– Limit interaction between modules

Dawn Song

Unix access control

• File has access control list (ACL)
– Grants permission to user ids
– Owner, group, other

• Process has user id
– Inherit from creating process
– Process can change id

• Restricted set of options

– Special “root” id

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Dawn Song

Unix file access control list
• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of
 four octal values

• Only owner, root can change permissions
– This privilege cannot be delegated or shared

• Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Privileged Programs
• Privilege management is coarse-grained in today’s OS

– Root can do anything

• Many programs run as root
– Even though they only need to perform a small number of

priviledged operations

• What’s the problem?
– Privileged programs are juicy targets for attackers
– By finding a bug in parts of the program that do not need

privilege, attacker can gain root

Dawn Song

What Can We Do?
• Drop privilege as soon as possible
• Ex: a network daemon only needs privilege to bind to

low port # (<1024) at the beginning
– Solution?
– Drop privilege right after binding the port

• What benefit do we gain?
– Even if attacker finds a bug in later part of the code, can’t

gain privilege any more

• How to drop privilege?
– Setuid programming in UNIX

Dawn Song

Unix file permission
• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of
 four octal values

• Only owner, root can change permissions
– This privilege cannot be delegated or shared

• Setid bits

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Effective user id (EUID) in
UNIX

• Each process has three Ids
– Real user ID (RUID)

• same as the user ID of parent (unless changed)
• used to determine which user started the process

– Effective user ID (EUID)

• from set user ID bit on the file being executed, or sys call
• determines the permissions for process

– file access and port binding

– Saved user ID (SUID)

• So previous EUID can be restored

• Real group ID, effective group ID, used similarly

Dawn Song

Operations on UIDs
• Root

– ID=0 for superuser root; can access any file

• Fork and Exec
– Inherit three IDs, except exec of file with setuid bit

• Setuid system calls
– seteuid(newid) can set EUID to

• Real ID or saved ID, regardless of current EUID
• Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

Dawn Song

Setid bits on executable
Unix file

• Three setid bits
– Setuid – set EUID of process to ID of file owner
– Setgid – set EGID of process to GID of file
– Sticky

• Off: if user has write permission on directory, can rename or
remove files, even if not owner

• On: only file owner, directory owner, and root can rename or
remove file in the directory

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Drop Privilege

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

Dawn Song

Other Security Principles

Dawn Song

Dawn Song

Defense in depth
• Use more than one security

mechanism
• Secure the weakest link

Dawn Song

Dawn Song

“Consider human
factors.”

Dawn Song

Other Principles
• Separation of Responsibility

• “Don’t rely on security through obscurity.”

• “Fail safe.”

• “Design security in from the start.”
• (Beware bolt-on security.)

Dawn Song

	Slide 1
	Program Verification
	Program Verification
	Precondition
	Precondition Example
	Postcondition
	Postcondition Example
	Proving Precondition ⇒ Postcondition
	Proving Precondition ⇒ Postcondition
	Slide 10
	Slide 11
	Slide 12
	Loop Invariant and Induction
	Loop Invariant and Induction
	Slide 15
	Function Post-/Pre-Conditions
	Dafny
	Documentation
	Preventing Security Vulnerabilities
	Preventing Security Vulnerabilities
	Slide 21
	Access Control & Capabilities
	Access Control
	Access Control Fundamentals
	Access control matrix [Lampson]
	Two implementation concepts
	ACL vs Capabilities
	ACL vs Capabilities
	ACL vs Capabilities
	Roles (also called Groups)
	Role-Based Access Control
	Reference Monitor
	Criteria for a reference monitor
	Slide 36
	Non-Language-Specific Vulnerabilities
	Non-Language-Specific Vulnerabilities
	Time-of-Check-to-Time-of-Use (TOCTTOU)
	The Flaw?
	TOCTTOU Vulnerability
	Minimize TCB
	Reference Monitor and Confinement for Running Untrusted Code
	Slide 45
	Confinement Examples
	Principle of Least Privilege
	Unix access control
	Unix file access control list
	Privileged Programs
	What Can We Do?
	Unix file permission
	Effective user id (EUID) in UNIX
	Operations on UIDs
	Setid bits on executable Unix file
	Drop Privilege
	Other Security Principles
	Slide 58
	Defense in depth
	Slide 60
	Slide 61
	Other Principles
	Slide 63

