
Software Security:
Design, Privilege Separation

CS 161: Computer Security
Prof. David Wagner

January 27, 2016

Robustness

•  Security bugs are a fact of life

•  How can we use access control to
improve the security of software, so
security bugs are less likely to be
catastrophic?

Privilege separation

•  How can we improve the security of
software, so security bugs are less likely
to be catastrophic?

•  Answer: privilege separation.
Architect the software so it has a
separate, small TCB.
– Then any bugs outside the TCB will not be

catastrophic

Web browser

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser Kernel

Rendered BitmapHTML, JS, ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].

2

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser Kernel

Rendered BitmapHTML, JS, ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].

2

Web Browser

Web Site

Browser
Kernel

Rendering
Engine

“Drive-by malware”: malicious web page
exploits a browser bug to read/write local
files or infect them with a virus

Trusted
Computing
Base

The Chrome browser
file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser Kernel

Rendered BitmapHTML, JS, ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].

2

Goal: prevent “drive-by
malware”, where a malicious
web page exploits a browser
bug to read/write local files
or infect them with a virus

TCB (for this property)

The Chrome browser
file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser Kernel

Rendered BitmapHTML, JS, ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].

2

700K lines of code

1000K lines of code

70% of vulnerabilities are
in the rendering engine.

Example: PNG, WMF, GDI+
rendering vulnerabilities in
Windows OS

Benefit of Secure Design

Browser

Known unpatched vulnerabilities
Secunia SecurityFocus

Extremely critical
(number / oldest)

Highly critical
(number / oldest)

Moderately critical
(number / oldest)

Less critical
(number / oldest)

Not critical
(number / oldest)

Total
(number / oldest)

Internet Explorer
6 0 0

4
17 November

2004

8
27 February 2004

12
5 June 2003

534
20 November

2000
Internet Explorer
7 0 0 1

30 October 2006
4

6 June 2006
10

5 June 2003
213

15 August 2006
Internet Explorer
8 0 0 0 1

26 February 2007
8

5 June 2003
123

14 January 2009
Internet Explorer
9 0 0 0 0 2

6 December 2011
26

5 March 2011

Firefox 3.6 0 0 0 0 0
1

20 December
2011

Firefox 38 0 0 0 0 0 0
Google Chrome
42 0 0 0 0 0 0

Opera 11 0 0 0 0 1
6 December 2011

2
6 December 2011

Safari 5 0 0 0 1
8 June 2010 0

2
13 December

2011

Discuss with a partner

•  How would you architect mint.com to
reduce the likelihood of a catastrophic
security breach?
– E.g., where attacker steals all users’ stored

passwords or empties out all their bank
accounts overnight

Summary

•  Access control is a key part of security.

•  Privilege separation makes systems
more robust: it helps reduce the impact
of security bugs in your code.

•  Architect your system to make the TCB
unbypassable, tamper-resistant, and
verifiable (small).

Software Security:
Principles

CS 161: Computer Security
Prof. David Wagner

January 29, 2016

TL-15	

TL-30	

TRTL-30	

TXTL-60	

“Security is economics.”

What	does	this	program	do?	

What	can	this	program	do?	

Can	it	delete	all	of	your	files?	 YES.		Why?	

“Least privilege.”

Touchstones for Least Privilege

•  When assessing the security of a system’s design,
identify the Trusted Computing Base (TCB).
–  What components does security rely upon?

•  Security requires that the TCB:
–  Is correct
–  Is complete (can’t be bypassed)
–  Is itself secure (can’t be tampered with)

•  Best way to be assured of correctness and its security?
–  KISS = Keep It Simple, Stupid!
–  Generally, Simple = Small

•  One powerful design approach: privilege separation
–  Isolate privileged operations to as small a component as possible
–  (See lecture notes for more discussion)

Check for Understanding

•  We’ve seen that PC platforms grant applications
a lot of privileges

•  Quiz: Name a platform that does a better job of
least privilege

“Ensure complete mediation.”

Ensuring Complete Mediation

•  To secure access to some capability/resource,
construct a reference monitor

•  Single point through which all access must occur
–  E.g.: a network firewall

•  Desired properties:
–  Un-bypassable (“complete mediation”)
–  Tamper-proof (is itself secure)
–  Verifiable (correct)
–  (Note, just restatements of what we want for TCBs)

•  One subtle form of reference monitor flaw
concerns race conditions …

	procedure	withdrawal(w)	
				//	contact	central	server	to	get	balance	
				1.	let	b	:=	balance	
					
				2.	if	b	<	w,	abort	
	
				//	contact	server	to	set	balance	
				3.	set	balance	:=	b	-	w	
	
				4.	dispense	$w	to	user	

TOCTTOU Vulnerability

TOCTTOU = Time of Check To Time of Use

	public	void	buyItem(Account	buyer,	Item	item)	{	
				if	(item.cost	>	buyer.balance)	
						return;	
				buyer.possessions.put(item);	
				buyer.possessionsUpdated();	
				buyer.balance	-=	item.cost;	
				buyer.balanceUpdated();	
		}	

“Separation of responsibility.”

Coming Up …
•  Homework 1 due Monday
•  Project 1 is now available

