Web Security:
Session management and CSRF

CS 161: Computer Security
Prof. Raluca Ada Popa
February 10, 2016

Credit: some slides are adapted from previous offerings of this course and from CS 241 of Prof. Dan Boneh

Announcements

@ Project 1 due Feb 16 11:59pm

Instructors' office hours
= David: Wed 4-5pm and Fri 1-2pm in 733 Soda
= Raluca: Fri 3-5pm in 729 Soda

HTTP is mostly stateless

@ Apps do not typically store persistent state in client
browsers

= User should be able to login from any browser
4 Web application servers are generally "stateless":

= Most web server applications maintain no information
in memory from request to request

» Information typically store in databases

= Each HTTP request is independent; server can't tell if 2
requests came from the same browser or user.

Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HTTP cookies

Outrageous Chocolate Chip Cookies

* * * * i 1676 reviews

0 Made 321 times

Recipe by: Joan

"A great combination of chocolate chips, oatmeal, and
peanut butter."

Ingredients

1/2 cup butter

1/2 cup white sugar

Market Pantry Granulated
Sugar - 4lbs

ADVERTISEMENT

1/3 cup packed brown sugar

1 cup all-purpose flour

1 teaspoon baking soda

1/4 teaspoon salt

1/2 cup rolled oats

1 cup semisweet chocolate chips

25m @ 18 servings 207 cals

On Sale m

What's on sale near you.

Target

@ TARGET 1057 Eastshore Hwy
" ALBANY, CA 94710

Sponsored

VN

These nearby stores have

ingredients on sale!

Cookies

4 A way of maintaining state

Browser GET ...

Browser maintains cookie jar

Server

Setting/deleting cookies by server

GET
@ Server
HTTP Header:

Set-cookie: @NAME=VALUE ;

The first time a browser connects to a particular web server,
it has no cookies for that web server

#® When the web server responds, it includes a Set-Cookie:
header that defines a cookie

Each cookie is just a name-value pair

View a cookie

In a web console (firefox, tool->web developer->web console), type
document.cookie
to see the cookie for that site

Cookie scope

GET ...

@ Server
HTTP Header:

Set-cookie: @NAME=VALUE ;

domain = (when to send) ; | scope

path = (when to send)

#® When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.

4 Domain and path inform the browser about which sites to
send this cookie to

Cookie scope

GET ...
@ Server
HTTP Header:
Set-cookie: @NAME=VALUE ;
domain = (when to send) ;
path = (when to send)
secure = (only send over HTTPS);

* Secure: sent over https only

https provides secure communication (privacy and
integrity) — we’ll see later in course

Cookie scope

GET
@ Server
HTTP Header:

Set-cookie: @NAME=VALUE ;
domain = (when to send) ; scope
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

» EXxpires is expiration date
Delete cookie by setting “expires” to date in past

» HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Cookie scope

@ Scope of cookie might not be the same as the URL-
host name of the web server setting it

Rules on:

1. What scopes a URL-host name is allowed to set
2. When a cookie is sent to a URL

What scope a server may set for a cookie

domain: any domain-suffix of URL-hosthame, except TLD
[top-level domains,
e.g. .com’]

example: host = “login.site.com”

allowed domains disallowed domains
login.site.com user.site.com
.Site.com othersite.com
.com

= login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu

path: can be set to anything

Examples

Web server at foo.example.com wants to set cookie with domain:

domain Where it will be sent

(value omitted) foo.example.com (exact)

bar.foo.example.com

foo.example.com * foo.example.com

baz.example.com

example.com

ample.com

.com

Credits: The Tangled Web: A Guideto Securing Modern Web Applications, by Michat Zalewski

Examples

Web server at foo.example.com wants to set cookie with domain:

domain Where it will be sent !
(value omitted) foo.example.com (exact)]
bar.foo.example.com Cookie not set: domain more s“.pecific than origin
foo.example.com * foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com * example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guideto Securing Modern Web Applications, by Michat Zalewski

When browser sends cookie

N

@ GET //URL-domain/URL-path | Sorver

Cookie: NAME = VALUE

Goal: server only sees cookies in its scope

Browser sends all cookies in URL scope:

* cookie-domain is domain-suffix of URL-domain, and
 cookie-path is prefix of URL-path, and
* [protocol=HTTPS if cookie is “secure”]

When browser sends cookie

N

@ GET //URL-domain/URL-path | orver

Cookie: NAME = VALUE

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com domain = .site.com
path = / path = /
non-secure non-secure

nttp://checkout.site.com/ cookie: userid=u2
nttp://login.site.com/ cookie: userid=ul, userid=u2
nttp://othersite.com/ cookie: none

Examples

cookie 1 cookie 2

name = userid name = userid

value = ul value = u2

domain = login.site.com domain = .site.com

path = / path = /

secure non-secure
nttp://checkout.site.com/ cookie: userid=u2
nttp://login.site.com/ cookie: userid=u2
nttps://login.site.com/ cookie: userid=ul; userid=u2

(arbitrary order)

Client side read/write: document.cookie

Setting a cookie in Javascript:
document.cookie = “name=value; expires=...; "
Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-70"

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser Ul

Firefox: Tools -> page info -> security -> view cookies

O Cookies s - - = (ulE)y

Search: Clear

The following cookies are stored on your computer:

Site Cookie Name
__| google.com NID -
__| google.com SNID N
__ google.com _utmz E
| google.com
__ google.com _utmz -

Name: _utma
Content: 173272373.288555819.1215984872.1215984872.1215984872.1
Domain: .google.com
Path: /adsense/
Send For: Any type of con
Expires: Sunday, January 17, 2638-4:60-

Remove Cockie] Remove All Cookies |

Session management

Sessions

A sequence of requests and responses from
one browser to one (or more) sites

= Session can be long (Gmail - two weeks)
or short
= Without session mgmt:

users would have to constantly re-authenticate

Session mgmt:
= Authorize user once;
= All subsequent requests are tied to user

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required"

S

Authentication Required

@ A username and password are being requested by https://crypto.stanford.edu. The site says:
"Password Required”

User Name: hellol

Password: eeeseseee

l oK | ‘ Cancel ’

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1INXRIeHQ=

HTTP auth problems

Hardly used in commercial sites

= User cannot log out other than by closing browser
+» What if user has multiple accounts?
+ What if multiple users on same computer?

= Site cannot customize password dialog
= Confusing dialog to users

= Easily spoofed

Session tokens

Browser

GET /index.html

N

Web Site

set anonymous session token

GET /books.html <
anonymous session token

POST /do-login

7z

Username & password

elevate to a logged-in session token

POST /checkout <
logged-in session token

check
credential
(later)

Validate
token

Storing session tokens:
Lots of options (but none are perfect)

* Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

* Embedd in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

* In a hidden form field:

<input type="hidden” name="sessionid"”
value="kh7y3b">

Storing session tokens: problems

* Browser cookie:

browser sends cookie with every request,
even when it should not (CSRF)

* Embed in all URL links:
token leaks via HTTP Referer header

* In a hidden form field: short sessions only

Best answer: a combination of all of the above.

Cross Site Request Forgery

Recall: session using cookies

Browser

[r—

POST/ login.cgi

Server

Se

t-cookie: authent'\cator

<

GET...
Cookje: authenticator

response

—

Basic picture

Server Victim bank.com

a COOKie for
~ bank.com

Attack Server

What can go bad? URL contains transaction action

Cross Site Request Forgery (CSRF)

% Example:

= Userlogs in to bank.com
+ Session cookie remains in browser state

= User visits malicious site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

= Browser sends user auth cookie with request
» Transaction will be fulfilled

@ Problem:
= cookie auth is insufficient when side effects occur

Form post with cookie

Victim Browser

\ | ‘“-«-\

www.attacker.com www.bank.com

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

Transfer complete!

User credentials

YoulIMiT:] 2008 CSRF attack

An attacker could

« add videos to a user’s "Favorites,"

« add himself to a user’s "Friend" or "Family" list,

« send arbitrary messages on the user’s behalf,

» flagged videos as inappropriate,

« automatically shared a video with a user’s contacts,
subscribed a user to a "channel" (a set of videos
published by one person or group), and

» added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

Home - Security = Facebook Hit by Cross-Site Request Forgery Attack

Facebook Hit by Cross-Site Request Forgery Attack

By Sean Michael Kerner | August 20, 2009 (= ey

Angela Moscaritolo

September 30, 2008

Popular websites fall victim to CSRF exploits

Defenses

CSRF Defenses

Secret Validation Token
p <input type=hidden value=23a3afo@lb>
RFII‘LS

Referer Validation

facebook Referer: http://www.facebook.com/home.php

Others (e.g., custom HTTP Header)

@ X-Requested-By: XMLHttpRequest

Secret Token Validation I?

1. goodsite.com server includes a secret token into the
webpage (e.g., in forms as a hidden field)

2. Requests to goodsite.com include the secret

3. goodsite.com server checks that the token embedded in
the webpage is the expected one; reject request if not

Can the token be?
123456

« Dateofbirth

Validation token must be hard to guess by the attacker

Variants

Session identifier
Session-independent token
Session-dependent token

Session identifier

. The user's session id is used as the secret
validation token

. On every request the server validates if the token
matches the session id

. Disadvantage is that anyone who reads the
contents of the page, which contains the user's
session id in the form of CSRF token, can
Impersonate the user till the session expires

Session independent nonce

. goodsite.com server sets a random nonce in a
cookie when the user first visits the site. Other
sites don’t know this random nonce

. The nonce is included as a hidden form field as
well

. Browser sends nonce and cookie to goodsite.come
on all form POSTs

. Disadvantage is that an active network attacker
can overwrite the session independent nonce with
his or her own CSRF token

Session-dependent nonce

. The server stores state that binds the user's CSRF
token to the user's session id

. Embeds CSRF token in every form

. On every request the server validates that the

supplied CSRF token is associated with the user's
session id

. Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

Answer: Token will be cryptographically bound to session
id, attacker cannot create token

Other CRSF protection: Referer Validation

- When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

— This information in the Referer header could be used to

distinguish between same site request and cross site
request

Referer Validation

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

[~ Remember me

or Sign up for Facebook

Forgot your password?

Referer Validation Defense

#® HTTP Referer header
= Referer: http://www.facebook.com/ ‘/
= Referer: http://www.attacker.com/evil.html X
= Referer:
+ Strict policy disallows (secure, less usable)
+» Lenient policy allows (less secure, more usable)

Privacy Issues with Referer header

. The referer contains sensitive information that
Impinges on the privacy

. The referer header reveals contents of the
search query that lead to visit a website.

. Some organizations are concerned that
confidential information about their corporate
intranet might leak to external websites via
Referer header

Referer Privacy Problems

Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/
projects/iphone/competitors.html

4 Common sources of blocking:
= Network stripping by the organization
= Network stripping by local machine
= Stripped by browser for HTTPS -> HTTP transitions
= User preference in browser

Custom HTTP Headers

—- Browsers prevent sites from sending custom
HTTP headers to another site but allow sites to
send custom HT TP headers to themselves.

— Cookie value is not actually required to prevent
CSRF attacks, the mere presence of the header
is sufficient.

— To use this scheme as a CSRF Defense, a site
must issue all state modifying requests using
XMLHttpRequest, attach the header and reject all
requests that do not accompany the header.

Custom Header Defense

@ XMLHttpRequest is for same-origin requests

= Can use setRequestHeader within origin
Limitations on data export format

= No setRequestHeader equivalent

= XHR2 has a whitelist for cross-site requests
Issue POST requests via AJAX:

@ Doesn't work across domains

X-Requested-By: XMLHttpRequest

Summary

Cookies add state to HTTP
= Cookies are used for session management

= They are attached by the browser automatically to
HTTP requests

@ CSRF attacks execute request on benign site because
cookie is sent automatically

Defenses for CSRF:
= embed unpredicatable token and check it later
s check referer header

