
Securing Internet
Communication: TLS
CS 161: Computer Security

Prof. David Wagner

March 11, 2016

Today’s Lecture

•  Applying crypto technology in practice
•  Two simple abstractions cover 80% of the

use cases for crypto:
–  “Sealed blob”: Data that is encrypted and

authenticated under a particular key
– Secure channel: Communication channel that

can’t be eavesdropped on or tampered with
•  Today: SSL – a secure channel

Today’s Lecture

•  Goal #1: overview of SSL/TLS, the most
prominent Internet security protocol
– Secures the web via HTTPS

•  Goal #2: cement understanding of crypto
building blocks & how they’re used together

Building Secure End-to-End Channels

•  End-to-end = communication protections
achieved all the way from originating client
to intended server
– With no need to trust intermediaries

•  Dealing with threats:
– Eavesdropping?

•  Encryption (including session keys)
– Manipulation (injection, MITM)?

•  Integrity (use of a MAC); replay protection
–  Impersonation?

•  Signatures
What’s missing?
Availability … ()

Building A Secure End-to-End
Channel: SSL/TLS

•  SSL = Secure Sockets Layer (predecessor)
•  TLS = Transport Layer Security (standard)

–  Both terms used interchangeably
•  Security for any application that uses TCP

–  Secure = encryption/confidentiality + integrity +
 authentication (of server, but not of client)

–  E.g., puts the ‘s’ in “https”

Regular web surfing - http: URL

But if we click here …

Web surfing with TLS/SSL - https: URL

Note: Amazon makes sure that all of these
images, etc., are now also fetched via
https: URLs.

Doing so gives the web page full integrity,
in keeping with end-to-end security.

(Browsers do not provide this “promotion”
automatically.)

Basic idea
•  Browser (client) picks some

symmetric keys for encryption
+ authentication

•  Client sends them to server,
encrypted using RSA public-
key encryption

•  Both sides send MACs
•  Now they use these keys to

encrypt and authenticate all
subsequent messages, using
symmetric-key crypto

EKA(keys)

MACk1(…)

MACk2(…)

Browser Amazon
Server

Ek3(message), MAC
k1(…)

HTTPS Connection (SSL / TLS)
•  Browser (client) connects to

Amazon’s HTTPS server

•  Client picks 256-bit random
number RB, sends over list of
crypto algorithms it supports

•  Server picks 256-bit random
number RS, selects algorithms
to use for this session

•  Server sends over its certificate
•  (all of this is in the clear)

•  Client now validates cert

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS)
•  Browser (client) connects via

TCP to Amazon’s HTTPS server

•  Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

•  Server picks 256-bit random
number RS, selects protocols to
use for this session

•  Server sends over its certificate
•  (all of this is in the clear)

•  Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), cont.
•  For RSA, browser constructs

“Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
–  One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

HTTPS Connection (SSL / TLS), cont.
•  For RSA, browser constructs

“Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
–  One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon
PS

PS

These seed a cryptographically strong
pseudo-random number generator (PRNG).
Then browser & server produce CB, CS, etc.,
by making repeated calls to the PRNG.

Amazon
Server

HTTPS Connection (SSL / TLS), cont.
•  For RSA, browser constructs

“Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
–  One pair to use in each direction

•  Browser & server exchange MACs
computed over entire dialog so far

•  If good MAC, Browser displays
•  All subsequent communication

encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys, MACs
–  Sequence #’s thwart replay attacks

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Alternative: Key Exchange via Diffie-Hellman

•  For Diffie-Hellman, server
generates random a, sends public
params and ga mod p
–  Signed with server’s private key

•  Browser verifies signature

•  Browser generates random b,
computes PS = gab mod p, sends
to server

•  Server also computes
PS = gab mod p

•  Remainder is as before: from PS,
RB, and RS, browser & server
derive symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS),
etc…

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p

PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K
-1

Amazon

…

Amazon
Server

HTTPS Connection (SSL / TLS)
•  Browser (client) connects via

TCP to Amazon’s HTTPS server

•  Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

•  Server picks 256-bit random
number RS, selects protocols to
use for this session

•  Server sends over its certificate
•  (all of this is in the clear)

•  Client now validates cert

SYN

SYN ACK

ACK

Browser

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Amazon
Server

Certificates
•  Cert = signed statement about someone’s public key

–  Note that a cert does not say anything about the identity of
who gives you the cert

–  It simply states a given public key KBob belongs to Bob …
•  … and backs up this statement with a digital signature made using a

different public/private key pair, say from Verisign

•  Bob then can prove his identity to you by you sending
him something encrypted with KBob …
– … which he then demonstrates he can read

•  … or by signing something he demonstrably uses
•  Works provided you trust that you have a valid copy

of Verisign’s public key …
– … and you trust Verisign to use prudence when she signs

other people’s keys

Validating Amazon’s Identity
• Browser compares domain name in cert w/ URL
– Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer
– These are hardwired into the browser – and trusted!
– There could be a chain of these …

• Browser applies issuer’s public key to verify
signature S, obtaining hash of what issuer signed
– Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high
confidence it’s indeed Amazon …
– assuming signatory is trustworthy

= assuming didn’t lose
private key; assuming
didn’t sign thoughtlessly

End-to-End ⇒ Powerful Protections

•  Attacker runs a sniffer to capture our WiFi
session?
–  (maybe by breaking crummy WEP security)
–  But: encrypted communication is unreadable

•  No problem!

•  DNS cache poisoning?
–  Client goes to wrong server
–  But: detects impersonation

•  No problem!

•  Attacker hijacks our connection, injects new traffic
–  But: data receiver rejects it due to failed integrity check

•  No problem!

Powerful Protections, cont.

•  DHCP spoofing?
–  Client goes to wrong server
–  But: detects impersonation

•  No problem!

•  Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
–  But: they can’t read; we detect impersonation

•  No problem!

•  Attacker slips in as a Man In The Middle?
–  But: they can’t read, they can’t inject
–  They can’t even replay previous encrypted traffic
–  No problem!

Validating Amazon’s Identity, cont.
• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

Validating Amazon’s Identity, cont.
• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

•  If it can’t find the cert, then warns the user that site
has not been verified
– Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose
if we incorrectly trust that the site is whom we think?

• A: All of them!
– Goodbye confidentiality, integrity, authentication
– Active attacker can read everything, modify, impersonate

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

•  Issues:
– Cost of public-key crypto (fairly minor)

o  Takes non-trivial CPU processing (but today a minor issue)
o  Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

•  Issues:
– Cost of public-key crypto (fairly minor)

o  Takes non-trivial CPU processing (but today a minor issue)
o  Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)
– Integrating with other sites that don’t use HTTPS
– Latency: extra round trips ⇒ 1st page slower to load

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• TCP-level denial of service
– SYN flooding
– RST injection

o  (but does protect against data injection!)

• SQL injection / XSS / server-side coding/logic flaws
• Vulnerabilities introduced by server inconsistencies

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws
• Vulnerabilities introduced by server inconsistencies

Regular web surfing: http: URL

So no integrity - a MITM
attacker can alter pages
returned by server …

And when we click here …
… attacker has changed the corresponding link so
that it’s ordinary http rather than https!

We never get a chance to use TLS’s protections! :-(

“sslstrip” attack

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws
• Vulnerabilities introduced by server inconsistencies
• Browser coding/logic flaws
• User flaws
– Weak passwords
– Phishing

•  Issues of trust …

TLS/SSL Trust Issues

• User has to make correct trust decisions …

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

TLS/SSL Trust Issues, cont.
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it’s not just their greed that matters …

This appears to be a
fully valid cert using
normal browser
validation rules.

Only detected by
Chrome due to its
recent introduction of
cert “pinning” –
requiring that certs
for certain domains
must be signed by
specific CAs rather
than any generally
trusted CA

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it’s not just their greed that matters …
•  … and it’s not just their diligence & security that

matters …
–  “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

BONUS SLIDES

Note: the cert is “forged” in the sense
that it doesn’t really belong to Gmail,
PayPal, or whomever. But it does not
appear forged because it includes a
legitimate signature from a trusted CA.

Securing DNS Lookups

•  Topic for next time:
How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

Think about these before Friday
• Problem 1. We have a database D = {d1, d2, …, dn}

of strings. A client anywhere in the world wants to
be able to query it with a string s and determine
whether s ∈ D; if the answer is “yes”, client should
get a proof of this fact. We want to store copies of D
on untrusted mirror servers. How do we do it
securely?

• Problem 2. Same as Problem 1, but now if the
answer is “no”, we also want a proof of that fact.
How do we do it securely?

