Most Common
Cryptography Mistakes

’.'

\

‘ -\ : ,) .—“ .
You fell victim to\One of the Flasgic blunders!™
. 5 ’ q\ : wl

' A
(! ‘

.
19

3: Key Re-use

 Don’t use same key for both directions.
— Risk: replay attacks

* Don’t re-use same key for both encryption and
authentication.

7: Careful with Concatenation

e Common mistake: Hash(S||T)
— “builtin” || “securely” = “built” | | “insecurely”

Amazon Web Services

http://amazon.com/set?u=daw&n=David&t=U&m-=...

\ I
v J
MAC(K,”udawnDavidtU”)

Amazon Web Services

://amazon.com/set?u=daw&n=DavidtAq&t=U&m-=...

\ I
|

MAC(K,”udawnDavidtAqtU”)
\

! \
://amazon.com/set?u=daw&n=David&t=A&qgt=U&m-=...

7: Careful with Concatenation

e Common mistake: Hash(S| |T)

— “builtin” || “securely” = “built” | | “insecurely”
e Fix: Hash(len(S) || S || T)

* Make sure inputs to hash/MAC are uniquely
decodable

5: Don’t Encrypt without Auth

* Common mistake: encrypt, but no authentication
— A checksum does not provide authentication

* |f you're encrypting, you probably want
authenticated encryption
— Encrypt-then-authenticate: E,,(M), F,,(E,,(M))
— Or, use a dedicated AE mode: GCM, EAX, ...

Encrypt without Auth Hall of Shame

ASP.NET (x2)
XML encryption
Amazon EC2
JavaServer Faces
Ruby on Rails
OWASP ESAPI
IPSEC

WEP

SSH2

4: Be Careful with Randomness

e Common mistake: use predictable random
number generator (e.g., to generate keys)

e Solution: Use a crypto-quality PRNG.
— /dev/urandom, CryptGenRandom, ...

Netscape Navigator

char chall[16], k[16];

srand(getpid() + time(NULL)
+ getppid());
for (int i=0; i<16; i++)
chal[i] = rand();
for (int i=0; i<16; i++)
chal[i] = rand();

Netscape Navigator 1.1

cert.

[Client] R, {K}e , {M}, ... » [Server]

where (R, K) = hash(microseconds, x)
X = seconds + pid + (ppid << 12)

Netscape Navigator 1.1

cert.

[Client J) R (K, (Ml o » [Server J

where (R, K) = hash(microseconds, x)
X = seconds + pid + (ppid << 12)

Attack: Eavesdropper can guess x (= 10 bits) and
microseconds (20 bits), and use R to check guess.

Bad PRNGs = broken crypto

Netscape server’s private keys (= 32 bits)
Kerberos v4’s session keys (= 20 bits)

X11 MIT-MAGIC-COOKIE1 (8 bits)

Linux vtun (= 1 bit)

PlanetPoker site (= 18 bits)

Debian OpenSSL (15 bits)

CryptoAG — NSA spiked their PRNG

Dual EC_DRBG — backdoor that only NSA can use

3: Passphrases Make Poor Keys

e Common mistake: Generate crypto key as
Hash(passphrase)

Problem: = 20 bits of entropy; even with a slow
nash, this is not nearly enough. Human-

generated secrets just don’t have enough
entropy.

 Example: Bitcoin brainwallets

* Solution: Crypto keys should be random.

2: Be Secure By Default

* Common mistake: Security is optional, or
configurable, or negotiable

* Fix: There is one mode of operation, and it is
secure. No human configuration needed.

— e.g., Skype

Wardriving / Access Point Mapping

eiarsaa sy
st 4
wne [S

Zv VoUW

Ha'ye

M

lapangs
Swwre Pork

- .
B}
Sy g

1 19
Lt an=alek

Iramete v
\- nl

Pasadena Ne’wvorks

L =80 5

AL 0y -qt-

LA Hicicict Vo, =l 13- rarar-ad.

_i:ﬁd Il Faeazne Sapal

'. L
o I Sl “'ulllhvuk'

-jnglsweod

-

rs:-u:-.-..

e ™ v d'e i}

’ : nH’
%).

'Jllf,

A.C:l}-ﬂ hh."

VY Thag ey oLy e

LSl See
- > = =l
ol Lo H'“""r-";

’ . g
Glamn‘_. Tk

,' : /.
?&" e dle
\‘if-.? [-
-
% !

X

s lreizecgs

La Zaray
;n.;l rm&s
%

llgiena

L

-Zar-NnE

o Vs

Inifqie
Hl‘hﬂ lum
R

l.lm

W;unwaJ

Zo.h
i

- J_

Somlh @
Mum.-'_

- EastLoc
153

Gﬁnmles
Mmiclr!r'

-;:CC"’I:\':*: P
N 1'rn Hm&._‘

2: Beware Rollback Attacks

* Common mistake: Security is negotiable, and
attacker can persuade you to fall back to
Insecure crypto

A CASE STUDY

MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[cli] Sodol. Here’s a nonce: R []
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[cli J Sodol. Here’s a nonce: R [J
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

Attack 1: Eavesdropper can try dictionary search
on password, given some known plaintext.

MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[cli J Sodol. Here’s a nonce: R [J
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

Attack 2: Active attacker can tamper with packets
by flipping bits, since there is no MAC.

| support 128-bit crypto

>

[cli] Sodol. Here’s a nonce: R []
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

| support 128-bit crypto

>

[Gl]) Sodol. Here’s a nonce: R [Bad Guy]
M @ RC4(K)

<

Attack 3: Bad guy can replay a prior session, since
client doesn’t contribute a nonce.

| support 128-bit crypto

>

[cli] Sodol. Here’s a nonce: R []
lent < Server
M @ RC4(K)

where K = hash(password | | R)

| support 128-bit crypto

>

[Gl]) Sodol. Here’s a nonce: R [Bad Guy]
M @ RC4(K)

<

Attack 4: Bad guy can replay and reverse message
direction, since same key used in both directions.

MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[o] .l don’t. Use 40-bit crypto [o]
M @ RC4(K)

<

where K = hash(uppercase(password))

MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[Client J .l don’t. Use 40-bit crypto [STy J
M @ RC4(K)

<

where K = hash(uppercase(password))

Attack 1: Eavesdropper can try dictionary search
on password, given some known plaintext.

MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[Client J .l don’t. Use 40-bit crypto [STy J
M @ RC4(K)

<

where K = hash(uppercase(password))

Attack 2: Dictionary search can be sped up with
precomputed table (given known plaintext).

MS Point-to-Point Encryption (MPPE)

| support 128-bit crypto

>

[Client J .l don’t. Use 40-bit crypto [Bad Guy]
M @ RC4(K)

where K = hash(uppercase(password))

Attack 3: Imposter server can downgrade client to
40-bit crypto, then crack password.

MS Point-to-Point Encryption (MPPE)

| support 128-bit >

| support 128-bit >

Sodol. Nonce: R
: , . Bad |
Client 4I don’t. Use 40-bit Server

Guy
M @ RC4(K) > M’ ® RCA(K)

>

where K = hash(uppercase(password)),
K’ = hash(password | | R)

Attack 4: Man-in-the-middle can downgrade
crypto strength even if both client + server

support 128-bit crypto, then crack password.

1: Don’t Roll Your Own

* Don’t design your own crypto algorithm

* Use a time-honored, well-tested system
— For data in transit: TLS, SSH, IPSEC
— For data at rest: GnuPG

0: Crypto Ain’t Magic

“If you think cryptography is the solution to your
problem, then you don’t understand cryptography and
you don’t understand your problem.”

— Roger Needham

Meta-Lessons

* Cryptography is hard.

* Hire an expert, or use an existing system
(e.g., SSL, SSH, GnuPQ@G).

e But: Most vulnerabilities are in applications and
software, not in crypto algorithms.

BONUS MATERIAL

8: Traffic Analysis is Still Possible

* Encryption doesn’t hide sender, recipient, length,
or time of message. (“meta-data”)

SSH

{handshake; key exchange)
[Client] [Server]

{l} X
< {lhe
{Sk R
) {Ske
{\n},

>

{\nfoo bar \nS},.

o

SSH
{\n},

<

{\nPassword: },.

{a}

{p}

>

iy

{e}

14}

{\n},

. {\nLast login: ..\n S\n},,

[Server]

o

SSH

{\n}y >
) {\nPassword: },.

19} .
1P}y .
{1}, X
1€}y X
(4}, X
{\n}, >

{\nLast login: ...\n S\n},.

[Server J

Reveals time
between
keystrokes.
This leaks
partial
information
about the
password!

Lessons Summarized

Don’t design your own crypto algorithm.

Use authenticated encryption (don’t encrypt
without authenticating).

Use crypto-quality random numbers.

Don’t derive crypto keys from passphrases.
Be secure by default.

Be careful with concatenation.

Don’t re-use nonces/IVs. Don’t re-use keys for
multiple purposes.

Encryption doesn’t prevent traffic analysis
(“metadata”).

7: Don’t re-use nonces/IVs

* Re-using a nonce or IV leads to catastrophic
security failure.

Credit card numbers in a database

dgaTkyuPS8bs4rPXoQn3

dgaalSeET8Hv4rvipQrz

cQGakyuFQcrieobrfoAH6Jg==

dgWdmSuESsrodbfXpQj0

cOSYmMCKLScDt4bDXgA] 21g==

COWT1CKNSsfrSbDIfgAnzIw=——

CAKAKkyOMT8T16LvQpw] 2TA==

After Base64 decoding

70

0o

93

93

2b

8f

1b

Cco

ecC

e’

b3

d’7

al

09

7

70

0o

%9a

95

277

84

41

cl

ef

e’z

bb

df

ab

0a

f3

71

01

Sa

93

Z2b

85

41

ca

e’

e9

ba

df

al

01

fa

26

76

05

9d

99

Z2b

84

41a

ca

e

el

b7

d’/

ab

08

f4

71

04

98

98

22

8b

49

cO

ed

el

b0

d’7

as

08

fo

22

71

05

93

94

22

8d

41a

c/

eb

eb

b0

df

as

09

3

23

10

02

9d

93

23

8c

1f

c4

e’

e8

bb

d0

a’l

08

fo

20

Encrypted credit card numbers

76

0o

93

93

2b

8f

1b

Cco

ecC

e’?

b3

d’7

al

09

7

70

0o

%9a

95

277

84

41

cl

ef

e’z

bb

df

ab

0a

f3

71

01

Sa

93

2b

85

41

ca

e’

e9

ba

df

al

01

fa

26

76

05

9d

99

Z2b

84

41a

ca

e

el

b7

d’/

ab

08

f4

71

04

98

98

22

8b

49

cO

ed

el

b0

d’7

as

08

fo

22

71

05

93

94

22

8d

41a

c/

eb

eb

b0

df

as

09

3

23

10

02

9d

93

23

8c

1f

c4

e’

e8

bb

d0

a’l

08

fo

20

Encrypted credit card numbers

93

2b

8f

1b

Cco

ecC

e’

b3

d’7

al

09

7

95

277

84

41

cl

ef

e’z

bb

df

ab

0a

f3

93

Z2b

85

41

ca

e’

e9

ba

df

ai

01

fa

20

99

Z2b

84

41a

ca

e

el

b7

d’/

ab

08

f4

98

22

8b

49

cO

ed

el

b0

d’7

as

08

fo

22

94

22

8d

41a

c/

eb

eb

b0

df

as

09

3

23

93

23

8c

4f

c4

e’

e8

bb

do

a’l

08

fo

20

=0x33, ‘4’ =0x34, ‘5" =0x35, ...

Encrypted credit card numbers

ASCII: ‘0" = 0x39, ..., ‘7" =0x37, ‘8" = 0x38, ‘9" = 0x39

7: Don’t re-use nonces/IVs

* Re-using a nonce or IV leads to catastrophic
security failure.

WEP

v

* Early method for encrypting Wifi: WEP (Wired Equivalent Privacy)
— Share a single cryptographic key among all devices
— Encrypt all packets sent over the air, using the shared key
— Use a checksum to prevent injection of spoofed packets

WEP - A Little More Detail

IV, P @®RCA(K, 1V)

 WEP uses the RC4 stream cipher to encrypt a TCP/IP
packet (P) by xor-ing it with keystream (RC4(K, 1V))

A Risk of Keystream Reuse

V, P @ RC4(K, IV)
V, P”® RCA4(K, IV) :

v

* Insome implementations, IVs repeat.

— If we send two ciphertexts (C, C') using the same |V, then the xor of
plaintexts leaks (P @ P’ = C® C’), which might reveal both plaintexts

» Lesson: Don’t re-use nonces/IVs

WEP -- Even More Detail

key

RC4 :>@

— I

IV original unencrypted packet checksum
-
—
Sl

1A

encrypted packet

2: Spoofed Packets

IV, (P, CRC(P)) ® Z

» Attackers can inject forged 802.11 traffic
— Learn Z = RC4(K, 1V) using previous attack

— Since the CRC checksum is unkeyed, you can then create valid
ciphertexts that will be accepted by the receiver

Attack #3: Packet Modification

o
ot

¥ (P, CRC(P)) ® RC4(K)) 4 T

(P, CRC(P)) ® RC4(K) @ (A, CRC(AJ)W

e CRCis linear
=> CRC(P @ A) = CRC(P) ® CRC(A)
=> the modified packet (P ® A) has a valid checksum

» Attacker can tamper with packet (P) without breaking RC4

Attack #4: Inductive Learning

(P, CRC(P)) ® (2, , 0)

i (P, CRC(P)) ® (Z, ., 1)

(P, CRC(P)) ® (Z, ,,, 255)

v

v

* LearnZ, A =RCA4(K, IV), , using previous attack

* Then guess Z,,; verify guess by sending a ping packet ((P,
CRC(P))) of length n+1 and watching for a response

* Repeat, for n=1,2,..., until all of RC4(K, 1V) is known
Credits: Arbaugh, et al.

Attack #5: Reaction Attacks

o
ot

s PRk, £ b rea @ 0x000100027F™ l'

/ 7,

 TCP ACKnowledgement returned by recipient
< TCP checksum on modified packet (P @ 0x00010001) is valid
< wt(P & 0x00010001) =1

» Attacker can recover plaintext (P) without breaking RC4

