Most Common
Cryptography Mistakes
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3: Key Re-use

 Don’t use same key for both directions.
— Risk: replay attacks

* Don’t re-use same key for both encryption and
authentication.



7: Careful with Concatenation

e Common mistake: Hash(S||T)
— “builtin” || “securely” = “built” | | “insecurely”



Amazon Web Services

http://amazon.com/set?u=daw&n=David&t=U&m-=...
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Amazon Web Services
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7: Careful with Concatenation

e Common mistake: Hash(S| |T)

— “builtin” || “securely” = “built” | | “insecurely”
e Fix: Hash(len(S) || S || T)

* Make sure inputs to hash/MAC are uniquely
decodable



5: Don’t Encrypt without Auth

* Common mistake: encrypt, but no authentication
— A checksum does not provide authentication

* |f you're encrypting, you probably want
authenticated encryption
— Encrypt-then-authenticate: E,,(M), F,,(E,,(M))
— Or, use a dedicated AE mode: GCM, EAX, ...



Encrypt without Auth Hall of Shame

ASP.NET (x2)
XML encryption
Amazon EC2
JavaServer Faces
Ruby on Rails
OWASP ESAPI
IPSEC

WEP

SSH2



4: Be Careful with Randomness

e Common mistake: use predictable random
number generator (e.g., to generate keys)

e Solution: Use a crypto-quality PRNG.
— /dev/urandom, CryptGenRandom, ...



Netscape Navigator

char chall[16], k[16];

srand(getpid() + time(NULL)
+ getppid());
for (int i=0; i<16; i++)
chal[i] = rand();
for (int i=0; i<16; i++)
chal[i] = rand();



Netscape Navigator 1.1

cert.

[ Client ] R, {K}e , {M}, ... » [ Server ]

where (R, K) = hash(microseconds, x)
X = seconds + pid + (ppid << 12)




Netscape Navigator 1.1

cert.

[ Client J ) R (K, (Ml o » [ Server J

where (R, K) = hash(microseconds, x)
X = seconds + pid + (ppid << 12)

Attack: Eavesdropper can guess x (= 10 bits) and
microseconds (20 bits), and use R to check guess.






Bad PRNGs = broken crypto

Netscape server’s private keys (= 32 bits)
Kerberos v4’s session keys (= 20 bits)

X11 MIT-MAGIC-COOKIE1 (8 bits)

Linux vtun (= 1 bit)

PlanetPoker site (= 18 bits)

Debian OpenSSL (15 bits)

CryptoAG — NSA spiked their PRNG

Dual EC_DRBG — backdoor that only NSA can use



3: Passphrases Make Poor Keys

e Common mistake: Generate crypto key as
Hash(passphrase)

Problem: = 20 bits of entropy; even with a slow
nash, this is not nearly enough. Human-

generated secrets just don’t have enough
entropy.

 Example: Bitcoin brainwallets

* Solution: Crypto keys should be random.



2: Be Secure By Default

* Common mistake: Security is optional, or
configurable, or negotiable

* Fix: There is one mode of operation, and it is
secure. No human configuration needed.

— e.g., Skype
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2: Beware Rollback Attacks

* Common mistake: Security is negotiable, and
attacker can persuade you to fall back to
Insecure crypto



A CASE STUDY



MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[ cli ] Sodol. Here’s a nonce: R [ ]
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)



MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[ cli J Sodol. Here’s a nonce: R [ J
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

Attack 1: Eavesdropper can try dictionary search
on password, given some known plaintext.



MS Point-to-Point Encryption (MPPE)

If both endpoints support 128-bit crypto:

| support 128-bit crypto

>

[ cli J Sodol. Here’s a nonce: R [ J
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

Attack 2: Active attacker can tamper with packets
by flipping bits, since there is no MAC.



| support 128-bit crypto

>

[ cli ] Sodol. Here’s a nonce: R [ ]
lent < Server
M @ RC4(K)

<

where K = hash(password | | R)

| support 128-bit crypto

>

[ Gl ] ) Sodol. Here’s a nonce: R [ Bad Guy]
M @ RC4(K)

<

Attack 3: Bad guy can replay a prior session, since
client doesn’t contribute a nonce.



| support 128-bit crypto

>

[ cli ] Sodol. Here’s a nonce: R [ ]
lent < Server
M @ RC4(K)

where K = hash(password | | R)

| support 128-bit crypto

>

[ Gl ] ) Sodol. Here’s a nonce: R [Bad Guy]
M @ RC4(K)

<

Attack 4: Bad guy can replay and reverse message
direction, since same key used in both directions.



MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[ o ] .l don’t. Use 40-bit crypto [ o ]
M @ RC4(K)

<

where K = hash(uppercase(password))



MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[ Client J .l don’t. Use 40-bit crypto [ STy J
M @ RC4(K)

<

where K = hash(uppercase(password))

Attack 1: Eavesdropper can try dictionary search
on password, given some known plaintext.



MS Point-to-Point Encryption (MPPE)

If one endpoint doesn’t support 128-bit crypto:

| support 128-bit crypto

>

[ Client J .l don’t. Use 40-bit crypto [ STy J
M @ RC4(K)

<

where K = hash(uppercase(password))

Attack 2: Dictionary search can be sped up with
precomputed table (given known plaintext).



MS Point-to-Point Encryption (MPPE)

| support 128-bit crypto

>

[ Client J .l don’t. Use 40-bit crypto [Bad Guy]
M @ RC4(K)

where K = hash(uppercase(password))

Attack 3: Imposter server can downgrade client to
40-bit crypto, then crack password.



MS Point-to-Point Encryption (MPPE)

| support 128-bit >

| support 128-bit >

Sodol. Nonce: R
: , . Bad |
Client 4I don’t. Use 40-bit Server

Guy
M @ RC4(K) > M’ ® RCA(K)

>

where K = hash(uppercase(password)),
K’ = hash(password | | R)

Attack 4: Man-in-the-middle can downgrade
crypto strength even if both client + server

support 128-bit crypto, then crack password.



1: Don’t Roll Your Own

* Don’t design your own crypto algorithm

* Use a time-honored, well-tested system
— For data in transit: TLS, SSH, IPSEC
— For data at rest: GnuPG



0: Crypto Ain’t Magic

“If you think cryptography is the solution to your
problem, then you don’t understand cryptography and
you don’t understand your problem.”

— Roger Needham



Meta-Lessons

* Cryptography is hard.

* Hire an expert, or use an existing system
(e.g., SSL, SSH, GnuPQ@G).

e But: Most vulnerabilities are in applications and
software, not in crypto algorithms.



BONUS MATERIAL



8: Traffic Analysis is Still Possible

* Encryption doesn’t hide sender, recipient, length,
or time of message. (“meta-data”)



SSH

{handshake; key exchange)
[ Client ] [ Server ]

{l} X
< {lhe
{Sk R
) {Ske
{\n},

>

{\nfoo bar \nS},.




o

SSH
{\n},

<

{\nPassword: },.

{a}

{p}

>

iy

{e}

14}

{\n},

. {\nLast login: ..\n S\n},,

[ Server ]




o

SSH

{\n}y >
) {\nPassword: },.

19} .
1P}y .
{1}, X
1€}y X
(4}, X
{\n}, >

{\nLast login: ...\n S\n},.

[ Server J

Reveals time
between
keystrokes.
This leaks
partial
information
about the
password!




Lessons Summarized

Don’t design your own crypto algorithm.

Use authenticated encryption (don’t encrypt
without authenticating).

Use crypto-quality random numbers.

Don’t derive crypto keys from passphrases.
Be secure by default.

Be careful with concatenation.

Don’t re-use nonces/IVs. Don’t re-use keys for
multiple purposes.

Encryption doesn’t prevent traffic analysis
(“metadata”).



7: Don’t re-use nonces/IVs

* Re-using a nonce or IV leads to catastrophic
security failure.



Credit card numbers in a database

dgaTkyuPS8bs4rPXoQn3

dgaalSeET8Hv4rvipQrz

cQGakyuFQcrieobrfoAH6Jg==

dgWdmSuESsrodbfXpQj0

cOSYmMCKLScDt4bDXgA ] 21g==

COWT1CKNSsfrSbDIfgAnzIw=——

CAKAKkyOMT8T16LvQpw ] 2TA==




After Base64 decoding
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Encrypted credit card numbers
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Encrypted credit card numbers
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=0x33, ‘4’ =0x34, ‘5" =0x35, ...




Encrypted credit card numbers

ASCII: ‘0" = 0x39, ..., ‘7" =0x37, ‘8" = 0x38, ‘9" = 0x39



7: Don’t re-use nonces/IVs

* Re-using a nonce or IV leads to catastrophic
security failure.



WEP

v

* Early method for encrypting Wifi: WEP (Wired Equivalent Privacy)
— Share a single cryptographic key among all devices
— Encrypt all packets sent over the air, using the shared key
— Use a checksum to prevent injection of spoofed packets



WEP - A Little More Detail

IV, P @®RCA(K, 1V)

 WEP uses the RC4 stream cipher to encrypt a TCP/IP
packet (P) by xor-ing it with keystream (RC4(K, 1V))



A Risk of Keystream Reuse

V, P @ RC4(K, IV)
V, P”® RCA4(K, IV) :

v

* Insome implementations, IVs repeat.

— If we send two ciphertexts (C, C') using the same |V, then the xor of
plaintexts leaks (P @ P’ = C® C’), which might reveal both plaintexts

» Lesson: Don’t re-use nonces/IVs



WEP -- Even More Detail

key

RC4 :>@

— I

IV original unencrypted packet checksum
-
—
Sl

1A

encrypted packet




2: Spoofed Packets

IV, (P, CRC(P)) ® Z

» Attackers can inject forged 802.11 traffic
— Learn Z = RC4(K, 1V) using previous attack

— Since the CRC checksum is unkeyed, you can then create valid
ciphertexts that will be accepted by the receiver



Attack #3: Packet Modification

o
ot

¥ (P, CRC(P)) ® RC4(K) ) 4 T

(P, CRC(P)) ® RC4(K) @ (A, CRC(AJ)W

e CRCis linear
=> CRC(P @ A) = CRC(P) ® CRC(A)
=> the modified packet (P ® A) has a valid checksum

» Attacker can tamper with packet (P) without breaking RC4




Attack #4: Inductive Learning

(P, CRC(P)) ® (2, , 0)

i (P, CRC(P)) ® (Z, ., 1)

(P, CRC(P)) ® (Z, ,,, 255)

v

v

* LearnZ, A =RCA4(K, IV), , using previous attack

* Then guess Z,,; verify guess by sending a ping packet ((P,
CRC(P))) of length n+1 and watching for a response

* Repeat, for n=1,2,..., until all of RC4(K, 1V) is known
Credits: Arbaugh, et al.



Attack #5: Reaction Attacks

o
ot

s PRk, £ b rea @ 0x000100027F™ l'

/ 7,

 TCP ACKnowledgement returned by recipient
< TCP checksum on modified packet (P @ 0x00010001) is valid
< wt(P & 0x00010001) =1

» Attacker can recover plaintext (P) without breaking RC4



