
DNS: the Kaminsky Blind
Spoofing Attack

CS 161: Computer Security
Prof. David Wagner

April 1, 2016

DNS Blind Spoofing, cont.

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe –
phew! ?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:

–  Attacker can get around caching of legit replies by
generating a series of different name lookups:

–  Trick victim into looking up a domain you don’t care

about, use Additional field to spoof the domain you do

	
	
	

...	
	

;; QUESTION SECTION:
;random7.google.com. IN A

;; ANSWER SECTION:
random7.google.com 21600 IN A doesn’t	matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

;; QUESTION SECTION:
;random7.google.com. IN A

;; ANSWER SECTION:
random7.google.com 21600 IN A doesn’t	matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server – so any future
X.google.com lookups go through the attacker’s machine

Defending Against Blind Spoofing

Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 – but
not fundamental, just convenient.

Total entropy: 16 bits

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Total entropy: ? bits
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

Defending Against Blind Spoofing
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

This is what primarily “secures”
DNS against blind spoofing
today.

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Lessons learned

• Special risks of caching and distributed systems
where information is spread across many machines

• Security risks: friend (cache) might be malicious

• Communication channel to friend (cache) might be
insecure

• Friend (cache) might be well-intentioned but
misinformed

Denial-of-Service (DoS)

CS 161: Computer Security
Prof. David Wagner

April 1, 2016

Attacks on Availability

• Denial-of-Service (DoS): preventing legitimate
users from using a computing service

• We do though need to consider our threat model …
– What might motivate a DoS attack?

Motivations for DoS

• Showing off / entertainment / ego

• Competitive advantage
– Maybe commercial, maybe just to win

• Vendetta / denial-of-money

• Extortion

• Political statements

•  Impair defenses

• Espionage

• Warfare

Attacks on Availability

• Deny service via a program flaw (“*NULL”)
– E.g., supply an input that crashes a server
– E.g., fool a system into shutting down

• Deny service via resource exhaustion
(“while(1);”)
– E.g., consume CPU, memory, disk, network

• Network-level DoS vs application-level DoS

DoS & Operating Systems

•  How could you DoS a multi-user Unix system on which
you have a login?

DoS & Operating Systems

•  How could you DoS a multi-user Unix system on which
you have a login?
–  char	buf[1024];	
int	f	=	open("/tmp/junk");		
while	(1)	write(f,	buf,	sizeof(buf));	
o  Gobble up all the disk space!	

–  while	(1)	fork();
o  Create a zillion processes!

– Create zillions of files, keep opening, reading, writing, deleting
o  Thrash the disk

– … doubtless many more

•  Defenses?

DoS & Operating Systems

•  How could you DoS a multi-user Unix system on which
you have a login?
–  char	buf[1024];	
int	f	=	open("/tmp/junk");		
while	(1)	write(f,	buf,	sizeof(buf));	
o  Gobble up all the disk space!	

–  while	(1)	fork();
o  Create a zillion processes!

– Create zillions of files, keep opening, reading, writing, deleting
o  Thrash the disk

– … doubtless many more

•  Defenses?
–  Isolate users / impose quotas

Network-level DoS

• Can exhaust network resources by
– Flooding with lots of packets (brute-force)
– DDoS: flood with packets from many sources
– Amplification: Abuse patsies who will amplify your traffic for

you

DoS & Networks

• How could you DoS a target’s Internet access?
– Send a zillion packets at them
– Internet lacks isolation between traffic of different

users!

• What resources does attacker need to pull this
off?
– At least as much sending capacity (“bandwidth”) as

the bottleneck link of the target’s Internet connection
o  Attacker sends maximum-sized packets

– Or: overwhelm the rate at which the bottleneck router
can process packets
o  Attacker sends minimum-sized packets!

•  (in order to maximize the packet arrival rate)

Defending Against Network DoS

•  Suppose an attacker has access to a beefy system with
high-speed Internet access (a “big pipe”).

•  They pump out packets towards the target at a very high
rate.

•  What might the target do to defend against the
onslaught?
–  Install a network filter to discard any packets that arrive with

attacker’s IP address as their source
o E.g., drop * 66.31.1.37:* -> *:*
o Or it can leverage any other pattern in the flooding traffic that’s not

in benign traffic
–  Attacker’s IP address = means of identifying misbehaving user

Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:
– Make traffic appear as though it’s from many hosts

o  Spoof the source address so it can’t be used to filter
•  Just pick a random 32-bit number of each packet sent

o  How does a defender filter this?
•  They don’t!
•  Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 75% do)
– Use many hosts to send traffic rather than just one

o  Distributed Denial-of-Service = DDoS (“dee-doss”)
o  Requires defender to install complex filters
o  How many hosts is “enough” for the attacker?

•  Today they are very cheap to acquire … :-(

It’s Not A “Level Playing Field”

• When defending resources from exhaustion,
need to beware of asymmetries, where attackers
can consume victim resources with little
comparable effort
– Makes DoS easier to launch
– Defense costs much more than attack

• Particularly dangerous form of asymmetry:
amplification
– Attacker leverages system’s own structure to pump up

the load they induce on a resource

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

• How does an attacker exploit this?
– Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
– All of the replies then go to the victim rather than the

attacker’s machine
– Each attacker pkt yields dozens of flooding pkts

• Note, this particular threat has been fixed
– By changing the Internet standard to state routers

shouldn’t forward pkts addressed to broadcast addrs
– Thus, attacker’s spoofs won’t make it to target subnet

smurf
attack

Amplification

• Example of amplification: DNS lookups
– Reply is generally much bigger than request

o  Since it includes a copy of the reply, plus answers etc.
⇒  Attacker spoofs DNS request to a patsy DNS

 server, seemingly from the target
o  Small attacker packet yields large flooding packet
o  Doesn’t increase # of packets, but total volume

• Note #1: these examples involve blind spoofing
– So for network-layer flooding, generally only works for

UDP-based protocols (can’t establish TCP conn.)

• Note #2: victim doesn’t see spoofed source
addresses
– Addresses are those of actual intermediary systems

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

TCP SYN Flooding
•  Attacker targets memory rather than network

capacity

•  Every (unique) SYN that the attacker sends
burdens the target

•  What should target do when it has no more
memory for a new connection?

•  No good answer!
– Refuse new connection?

o  Legit new users can’t access service
– Evict old connections to make room?

o  Legit old users get kicked off

TCP SYN Flooding Defenses

•  How can the target defend itself?

•  Approach #1: make sure they have tons of
memory!

– How much is enough?
– Depends on resources attacker can bring to bear

(threat model), which might be hard to know

TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their
connections
– Hard because only way to identify them is based on IP

address
o We can’t for example require them to send a password because

doing so requires we have an established connection!
– For a public Internet service, who knows which

addresses customers might come from?
– Plus: attacker can spoof addresses since they don’t

need to complete TCP 3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”;
only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here

Do not create
state here

Instead, encode it here

SYN Cookies: Discussion

•  Illustrates general strategy: rather than holding
state, encode it so that it is returned when
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

Application-Layer DoS

• Rather than exhausting network or memory
resources, attacker can overwhelm a
service’s processing capacity

• There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

The link sends a request to the web server that
requires heavy processing by its “backend
database”.

Algorithmic complexity attacks
• Attacker can try to trigger worst-case complexity

of algorithms / data structures

• Example: You have a hash table.
Expected time: O(1). Worst-case: O(n).

• Attacker picks inputs that cause hash collisions.
Time per lookup: O(n).
Total time to do n operations: O(n^2).

• Solution? Use algorithms with good worst-case
running time.
– E.g., universal hash function guarantees that

Pr[hk(x)=hk(y)] = 1/2^b, so hash collisions will be rare.

Application-Layer DoS

•  Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

•  There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

•  Defenses against such attacks?

•  Approach #1: Only let legit users issue expensive requests
– Relies on being able to identify/authenticate them
– Note: that this itself might be expensive!

•  Approach #2: Force legit users to “burn” cash

•  Approach #3: massive over-provisioning ($$$)

DoS Defense in General Terms
• Defending against program flaws requires:

– Careful design and coding/testing/review
– Consideration of behavior of defense mechanisms

o  E.g. buffer overflow detector that when triggered halts
execution to prevent code injection ⇒ denial-of-service

• Defending resources from exhaustion can be
really hard. Requires:
– Isolation and scheduling mechanisms

o  Keep adversary’s consumption from affecting others
– Reliable identification of different users

