
Security for Cloud & Big Data

CS 161: Computer Security
Prof. David Wagner

April 25, 2016

Awesome Project 2 Solutions
•  Honorable mention:

Vincent Wang and John Choi – super-efficient
updates (6-9x better than our target!) using a log of
changes, in just 300 lines of code

•  Honorable mention:
Emily Scharff and Sherdil Niyaz – elegant
scheme for revocation: Alice creates a separate
“telescope” (symmetric key) for each user she
shares with, and keeps track of them

•  Grand prize:
Roger Chen – beautiful log-based scheme,
coalesces updates in download(); only submission
to pass all tests!

Awesome Project 2 Solutions
•  Honorable mention:

Vincent Wang and John Choi – super-efficient
updates (6-9x better than our target!) using a log of
changes, in just 300 lines of code

•  Honorable mention:
Emily Scharff and Sherdil Niyaz – elegant
scheme for revocation: Alice creates a separate
“telescope” (symmetric key) for each user she
shares with, and keeps track of them

•  Grand prize:
Roger Chen – beautiful log-based scheme,
coalesces updates in download(); only submission
to pass all tests!

Big Data in the Cloud
Trends in computing:
•  “Big data”: Easy to collect lots and lots of data

about us
•  “Cloud computing”: Cheaper to store data in the

cloud, and do computation there

What are the security and privacy implications of
these trends?

Big Data in the Cloud
Trends in computing:
•  “Big data”: Easy to collect lots and lots of data

about us
•  “Cloud computing”: Cheaper to store data in the

cloud, and do computation there

What are the security and privacy implications of
these trends?
•  Privacy – companies know a lot about us
•  Data security – a security breach exposes all our

data

Potential Solutions
Some possible ways to mitigate the threat:
•  Policy: Minimize data collection or retention, limit

who can access stored data or for what purposes
•  Technology: Encrypt data while it is stored on

cloud servers

Potential Solutions
Some possible ways to mitigate the threat:
•  Policy: Minimize data collection or retention, limit

who can access stored data or for what purposes
•  Technology: Encrypt data while it is stored on

cloud servers – but then how can they do any
useful computation on our data?

Example: Project 2 + Search
•  My document is stored in the cloud on a server,

encrypted, as per Project 2, so I don’t have to trust
the server.

•  But I also want to be able to do keyword search
over all my documents to look for matches, without
having to download and decrypt all my documents.

Example: Project 2 + Search
•  My document is stored in the cloud on a server,

encrypted, as per Project 2, so I don’t have to trust
the server.

•  But I also want to be able to do keyword search
over all my documents to look for matches, without
having to download and decrypt all my documents.

•  How can I search in encrypted documents?

Solution #1: Deterministic Enc.
•  One solution: Each word w is encrypted separately

and deterministically:

 DetEnck(w) = AES-CBCk(w)
 with IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.

•  Security?

Solution #1: Deterministic Enc.
•  One solution: Each word w is encrypted separately

and deterministically:

 DetEnck(w) = AES-CBCk(w)
 with IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.

•  Security? This leaks a lot of data about my docs.

Solution #2: Verifiable Enc.
•  For each word w, store

 r, SHA256(r || DetEnck(w))

where r is random and different each time, and
DetEnck(w) is deterministic encryption as before.

•  To search for word w, send x = DetEnck(w) to
server. For each r, y on the server, server can test
whether SHA256(r || x) = y.

•  Security?

Solution #2: Verifiable Enc.
•  For each word w, store

 r, SHA256(r || DetEnck(w))

where r is random and different each time, and
DetEnck(w) is deterministic encryption as before.

•  To search for word w, send x = DetEnck(w) to
server. For each r, y on the server, server can test
whether SHA256(r || x) = y.

•  Security? Leaks data about the keywords I search
for, but not other words.

Solution #3: Encrypted Indices
•  Standard search index: a dict that maps word w to

list of names of documents that contain w.

{ 'giraffe': [1, 3, 17], 'egotistical': [5, 17, 20], ... }

•  Encrypted index: encrypt each entry separately.

{ H(k, 'giraffe'): Ek([1,3,17]),
 H(k, 'egotistical'): Ek([5,17,20]) }

•  To search for 'giraffe', send x = H(k, 'giraffe') to
server, get back encrypted list, and decrypt it.

Security overview
•  Talk to a partner, fill in the following chart:

Scheme Time for
one query

Secure for
common words?

Secure for rare
words?

Deterministic encrypt O(1)

Verifiable encryption O(n) ✔�
(except searched)

Encrypted index

Security overview
•  Talk to a partner, fill in the following chart:

Scheme Time for
one query

Secure for
common words?

Secure for rare
words?

Deterministic encrypt O(1) ✗ ✔

Verifiable encryption O(n) ✔�
(except searched)

✔

Encrypted index O(1) ✔ ✔

Case Study: Encrypted Email
•  My email is stored in the cloud on a server.
•  For security reasons, I want it to be stored in

encrypted form, so I don’t have to trust the server.
•  But I also want to be able to do keyword search on

all my email.

Case Study: Encrypted Email
•  My email is stored in the cloud on a server.
•  For security reasons, I want it to be stored in

encrypted form, so I don’t have to trust the server.
•  But I also want to be able to do keyword search on

all my email.
•  How can I search on encrypted email?

Case Study: Encrypted Email
•  My email is stored in the cloud on a server.
•  For security reasons, I want it to be stored in

encrypted form, so I don’t have to trust the server.
•  But I also want to be able to do keyword search on

all my email.
•  How can I search on encrypted email?
•  Answer: Any of the above techniques.

(But can’t do regexp/wildcard searches, e.g.,
searching for “giraf*”.)

Solution for Encrypted Email
•  One solution: Each word w is encrypted separately

and deterministically:
 Ek(w) = AES-CBCk(w) where IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.
Problem: This leaks a lot of data about my email.

Solution for Encrypted Email
•  One solution: Each word w is encrypted separately

and deterministically:
 Ek(w) = AES-CBCk(w) where IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.
Problem: This leaks a lot of data about my email.

•  More secure solution: For each word w, store
 r, SHA256(r, Ek(w))
where r is random and different each time, and
Ek(w) is deterministic encryption as above.

•  To search for word w, send x = Ek(w) to server.
For each r, y on the server, server can test whether
SHA256(r, x)=y.

Case Study: CryptDB
•  Databases often get hacked. CryptDB encrypts all

data in database, so you don’t have to trust your
database (as much).

•  How can I do SQL queries on encrypted database?

Solution: Crypto
•  Some queries can be handled with above

techniques. E.g.,
SELECT * WHERE name=‘David’ →
SELECT * WHERE name=0xF6C..18

•  Can handle SELECT with equality match; JOIN.
For SUM, use homomorphic crypto (next).

Homomorphic encryption
•  RSA encryption is homomorphic:

E(a×b) = a3 × b3 = E(a) × E(b) (mod n)

This lets you compute products of encrypted data.

•  For sums, Paillier encryption (not taught in this
class) has a similar homomorphic property:

E(a+b) = … = E(a) ⊞ E(b)

Solution: Crypto
•  Some queries can be handled with above

techniques. E.g.,
SELECT * WHERE name=‘David’ →
SELECT * WHERE name=0xF6C..18

•  Can handle SELECT with equality match; JOIN.
For SUM, use homomorphic crypto (next).

•  For all other SQL operations, download data to
client and decrypt in client.

•  Works surprisingly well: ~ 15% performance
overhead, almost all sensitive data can be
encrypted.

Integrity
•  That provides confidentiality; what about integrity?

•  Want to verify that any records returned by server
are actually part of database (and isn’t spoofed).

Merkle Tree

Takeaways
•  Crypto provides a powerful way to protect data in

the cloud – and allows servers to do some useful
work on your data, without seeing the data.

