
Raluca Popa
Spring 2018

CS 161
Computer Security Discussion 1

Week of January 22, 2018: GDB and x86 assembly

Objective: Studying memory vulnerabilities requires being able to read assembly and step
through it with a debugger. In this class, we’ll be using 32-bit x86 and GDB.

Note: Feel free to come by office hours held by any of the staff. Don’t hesitate to
ask for help! Our office hours exist to help you. Please visit us if you have any questions or
doubts about the material.

A few useful GDB commands

For OS X users: lldb uses different commands. You will be expected to know gdb.

• run (r)

• break (b) 〈 func | *addr | line 〉: add a breakpoint at the specified spot

• step (s): continue to next line, next (n): next line, skip function calls

• stepi (si), nexti (ni): same, but at the instruction level

• continue (c): until next breakpoint

• 〈enter〉: repeat previous command

• print (p) [ /f ] 〈 var | $register 〉: print the specified value (in format f)

• list (l) [line]: show source code around the current line or line

• layout split: splits the GDB interface into source, assembly, and commands sections.

• disassemble (disas) [func]: show the assembly for the current context, or func

• x/nx[b|w] addr : print n bytes (b) or 4-byte words (w) of memory as hex (x)
(If displaying bytes, keep in mind that x86 is little-endian!)

Page 1 of 4



Intro to x86 assembly

32-bit x86 prefixes its registers with e- (eax, ebp, esp...). x86–64 uses r- (rax, rbp, rsp...).

In AT&T syntax, the suffixes -b, -i, -l, and -q clarify if the instruction operates on bytes,
16-bit words, 32-bit words, or 64-bit words. Source is on the left, destination on the right.

There are 8 general-purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP.
The registers EBP (base pointer) and ESP (stack pointer) are usually used to delimit the
current function’s stack frame.

The stack grows down (towards lower addresses), by decrementing ESP (subl $0x18, %esp)
or using the shortcut push: pushl %ebp (decrement ESP by 4 and copy EBP there).

Correspondingly, popl %ebp puts the memory (ESP,ESP+4) into EBP and increments ESP.

The usual function prologue is

push %ebp // save the top of the previous frame

mov %esp %ebp // start new frame by moving EBP down to ESP

sub X %esp // X = size of local variables

And the corresponding exit is

add X %esp // * (sometimes ‘mov %ebp %esp‘)

pop %ebp // *

ret // pops return address from stack, goes there

* sometimes these two lines are replaced with just leave.

Conversely to ret, call addr pushes EIP (the instruction pointer, that is, the address of
the next instruction) onto the stack as a saved return address before jumping to addr.

A more thorough overview of 32-bit x86 can be found at https://www.cs.virginia.edu/

~evans/cs216/guides/x86.html

Discussion 1 Page 2 of 4 CS 161 – Fa 16

https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html


Figure 1: Left: memory layout for 32-bit Linux. The stack (left, at top) grows downward.
Right: the contents of one frame on the stack (exercise: match the entries up with the
instructions in the function prologue and exit).

Question 1 A Short Discussion on Canaries (10 min)

Discussion 1 Page 3 of 4 CS 161 – Fa 16



Question 2 C Memory Defenses (30 min)
In the Thursday Lecture, Professor Raluca described some C memory vulnerabilities and
defenses for those insisting on writing C or C++ code.

Mark the following statements as True or False and justify your solution. Please feel
free to discuss with students around you.

1. Stack canaries can not protect against all buffer overflow attacks in the stack.

2. A format-string vulnerability can allow an attacker to overwrite a saved return
address even when stack canaries are enabled.

3. If you have data execution prevention/executable space protection/NX bit, an at-
tacker can write code into memory to execute.

4. If you have a non-executable stack and heap, buffer overflows are no longer ex-
ploitable.

5. If you have a non-executable stack and heap, an attacker can use Return Oriented
Programming.

6. If you use a memory-safe language, buffer overflow attacks are impossible.

7. ALSR, stack canaries, and NX all combined are insufficient to prevent exploitation
of all buffer overflow attacks.

Solution:

1. True, stack canaries defeated if they are revealed by information leakage, or if
there is not sufficient entropy, an attacker can guess the value. Remember, the
attack just needs to work once in the real world.

2. True, with format string vulnerabilities, the attacker can learn the contents
of the stack frame, other parts of memory, and write to other addresses in
memory. Stack canaries won’t save you here.

3. Many attacks rely on writing malicious code to memory and then executing
them. If we make writable parts of memory non-executable, these attacks
cannot succeed.

Discussion 1 Page 4 of 4 CS 161 – Fa 16



4. False, an attacker can still use techniques like Return Oriented Programming.

5. True, Return oriented programming is a technique that uses existing instruc-
tions already in memory to change the original program flow.

6. True, buffer overflow attacks do not work with memory safe languages.

7. True, all of these protections can be overcome.

Short answer!

1. What would happen if the stack canary was between the return address and the
saved frame/base pointer?

2. What if the canary was above the return address?

Solution:

1. An attacker can overwrite the saved frame pointer so when the program tries
to return, it uses the wrong address as the return address.

2. It doesn’t stop an attacker from overwriting the return address. Although if an
attacker had absolutely no idea where the return address, it could potentially
detect stack smashing.

Discussion 1 Page 5 of 4 CS 161 – Fa 16


