
Raluca Popa
Spring 2018

CS 161
Computer Security Discussion 3

Week of February 5, 2018: Cryptography I

Question 1 Activity: Cryptographic security levels (20 min)
Say Alice has a randomly-chosen symmetric key S ∈ {0, 1}128 (that is, a 128-bit key)
that she uses to encrypt her messages to Bob.

Eve is very suspicious of these messages and would like to brute-force guess the key. She
does this by getting a pair (M,C) where she knows that C is Alice’s encryption of M .
She keeps guessing keys k until Ek(M) = C.

(a) Probability review. How many attempts does Eve expect to have to try in order
to guess Alice’s key, if she guesses keys completely at random (with repetition)?
What about if she guesses in order (without repetition)?

(b) Eve sits down at her computer and starts brute-forcing the key. If her computer
can attempt 1 billion keys per second, how much time does Eve expect to wait?

How long of a time is this?

(c) Eve decides to enlist the help of her friend Ed, who works at the NSA and has
access to a cluster of 1,000,000 servers1 running in parallel that can each guess 10
billion keys per second.

Now how long will Eve be waiting? How much faster is this?

(d) Alice starts getting worried about Eve and decides to increase the key size to 256
bits. Bob claims this is pointless since the key is only twice as big as before, and
so Eve needs only double as much time as before. Is he right?

(e) Bonus. The quantum computing Grover’s algorithm lets you brute force a function
using onlyO(N1/2) evaluations, instead of theO(N) required in classical computing.

If Eve gets a quantum computer, now how many attempts does Eve have to try for
a 128 bit key? How much faster is this?

If we wanted to increase key size to combat this, how much of an increase do we
need? Should we be concerned about possible future quantum computing attacks
against symmetric-key cryptography?

Solution:

1This is estimated to be around the number of servers that Google has. https://what-if.xkcd.com/63/

Page 1 of 6

https://what-if.xkcd.com/63/


(a) If Eve guesses at random, we get a geometric probability distribution, with
p = 2−128 (the probability of correct guess). The expected value is 1/p, so
Eve needs to make 2128 guesses.

Even if Eve guesses in a systematic way, like counting up from 0, she still
needs to make approximately 2127 guesses on average, which is still almost
as many as 2128 (just a factor of 1/2 away).

(b) 2128 nanoseconds, which is 3.4×1029 seconds, or 1.0×1022 years, or 8×1011

times the age of the universe.

(c) Even with this massive power increase (10 million times faster), Eve will
still expect to wait 3.4× 1022 seconds, or 1.0× 1015 years, or 80, 000 times
the age of the universe.

(d) No. Doubling the size of the key means Eve now has to make 2256 guesses,
which is the square of 2128, not double (twice 2128 is 2129).

(e) This attack shortens the needed number of attempts to 2128/2 = 264. This
is much shorter: only 584 years at 1 ns per attempt (and merely 30 minutes
using the setup in part (c))! But the attack can be entirely mitigated by
just doubling the key size (like in part (d)). For this reason we mostly
don’t worry about quantum attacks on symmetric-key crypto.

Discussion 3 Page 2 of 6 CS 161 – Sp 18



Question 2 Block Cipher Potpourri (10 min)

(a) What is the difference between IND-KPA and IND-CPA?

Solution: Assuming Alice has an encryption scheme E and a secret key k, the
steps for IND-KPA are as follows:

1. Mallory sends Alice two distinct plaintext chosen messages M1, M2

2. Alice randomly selects Mb between M1, M2 and encrypts it C = E(Mb, k)

3. Mallory now guesses if C corresponds to M1 or M2

If Mallory is able to guess with a probability > 1
2

then, Alice’s scheme is not
IND-KPA. The difference between IND-KPA and IND-CPA is that before step
1, Mallory is able to ask Alice to encrypt a polynomially bounded number of
messages which she can also do after receiving back C before having to make
her guess. The reason that Mallory may only encrypt a polynomial number of
messages is that otherwise she could trick Alice into enumerating all possible
outputs for a given message, and the game becomes trivial.

(b) Are block ciphers IND-CPA?

Solution: No, as mentioned in lecture, block ciphers alone are not IND-CPA
because they are deterministic and will always give the same output for the same
input. The proposed solution is to create schemes using block ciphers that add
entropy to each message such as the IV in CBC (cipher block chaining) or the
nonce in CTR (counter) modes. There is a scheme just using a block cipher
called ECB (electronc codebook) mode where encryption is done on a block by
block basis without incorporating any additional entropy.

(c) What are good possible sources of entropy for key generation for a block cipher?

• The computer’s clock time (assumed in seconds)

• The Parent Process ID ⊕ my Process ID ⊕ time

• Hardware noise generator

• Hardware noise generator ⊕ time

• 101010101... ⊕ Hardware noise generator

Solution:

• No, a computer clock counts the number of seconds from a given point in
time (traditionally the epoch of unix), and because of this, the entropy of
such a request is dramatically reduced if you can narrow down the window

Discussion 3 Page 3 of 6 CS 161 – Sp 18



of time when such a call was made. If you are able to narrow down the
year in which a call to time was made, the entropy is reduced to 25 bits,
narrowing it down to a month is 22 bits, and narrowing it down to the
day is 17 bits.

• No, time as outlined above is not a sufficient source of entropy and with
the addition of process IDs remains insufficient. This example was actually
inspired by a previous implementation of Netscape’s SSL and you can read
up on the paper published on its insecurity by our very own David Wagner.
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

• Yes, the hardware implemented (psuedo) random number generators are
traditionally very strong sources of entropy in today’s computers because
they incorporate a physical source for their randomness. Other great
examples that have been used are phsyical dice rollers, weather patterns,
lava lamps, etc.

• Yes, given a proper source of entropy we can still combine it with a weak
source without losing this randomness. This does rely on the fact that we
are using a one-to-one function such as XOR, otherwise if we had instead
used a bitwise AND or OR, we would have been removing the entropy
provided by the hardware.

• Yes, this is just an extrapolation of the previous example. Even with a
known value being included with our actual source of randomness, if we
remove the 101010101... bitstring, we are still left with enough entropy to
provide us with a good key.

(d) Why does a block cipher need to be a permutation?

Solution: A block cipher needs to be one-to-one so that it is invertible, and
if it wasn’t a permutation then more than one input could result in the same
output which means that a ciphertext couldn’t be decrypted.

Discussion 3 Page 4 of 6 CS 161 – Sp 18

https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html


Question 3 Block cipher security and modes of operation (15 min)
As a reminder, the cipher-block chaining (CBC) mode of operation works like this:

The output of the encryption is the ciphertext + the IV that was used.

(a) Does the initialization vector (IV) have to be non-repeating? Why?

Solution: Yes, a fundamental criteria for IVs is that they cannot repeat. This
prevents CBC from degenerating into a deterministic encryption algorithm (such
as ECB mode). In deterministic encryption schemes, if we encrypt the same mes-
sage multiple times, the ciphertexts will be identical each time. Unfortunately,
deterministic encryption schemes can leak a lot of information. Consider the
example from lecture where the Linux penguin is encrypted using ECB-mode.
Even though all of the colors get mapped to new encrypted values, we can still
clearly see the penguin since pixels of the same color share the exact same value
after encryption.

To see why CBC-mode with a repeating IV becomes deterministic, consider the
simple case of always using an IV of 0 and encrypting the same message twice.
In this scenario, the first ciphertext block will always be Ek(m[0]), which will be
the same value for two identical plaintext messages; this will then propagate to
subsequent blocks and cause all of the ciphertext blocks to become equivalent.

When we use non-repeating IVs for CBC-mode, even if we encrypt the same
message multiple times, CBC-mode will generate distinct and random-looking
ciphertexts each time.

(b) Is a non-repeating IV enough? Imagine you sequentially picked IVs from a list of
non-repeating, but publicly-known, numbers, e.g., A Million Random Digits with

Discussion 3 Page 5 of 6 CS 161 – Sp 18



100,000 Normal Deviates (RAND, 1955).

Say Alice encrypts the one-block long message m1 with initialization vector IV1

to get C1 and encrypts m2 using IV2 to get C2. She gives these to Mallory and
challenges her to tell which C came from which m.

Mallory knows that Alice’s next IV will be IV3, and can ask Alice to encrypt
messages for her (a chosen plaintext attack). Can Mallory distinguish the two
ciphertexts?

Solution: Yes. Mallory asks Alice for the encryption of m1⊕ IV1⊕ IV3. When
Alice runs CBC, the output will be the block cipher output for m1 ⊕ IV1. But
that’s just C1! So for CBC an IV must also be unpredictable, which is to say it
has to be kept secret until after the encryption is done.

Thus, IVs for CBC-mode encryption have two necessary criteria: (1) they must
not repeat across messages and (2) they must be unpredictable. It turns out we
can satisfy both criteria (with high probability) if we just generate a random
IV for every message we encrypt.

Discussion 3 Page 6 of 6 CS 161 – Sp 18


