
Popa & Wagner
Spring 2016

CS 161
Computer Security Discussion 5

Week of February 19, 2017

Question 1 Diffie–Hellman key exchange (15 min)
Recall that in a Diffie-Hellman key exchange, there are values a, b, g and p. Alice
computes ga mod p and Bob computes gb mod p.

(a) Which of these values are publicly known and which must be kept private?

Solution:

g and p are publicly known. Implementations of Diffie-Hellman often have
carefully picked values of g and p which are known to everyone. Alice and Bob
must keep a and b secret respectively.

(b) Eve can eavesdrop on everything sent between Alice and Bob, but can’t change
anything. Alice and Bob run Diffie-Hellman and have agreed on a shared symmetric
key K. However, Bob accidentally sent his b to Alice in plain text. If Eve viewed
all traffic since the beginning of the exchange, can she figure out what K is?

Solution:

Yes, this will be very easy for Eve: she can use the value A = ga mod p which
Alice sent to calculate K = Ab mod p.

(c) Mallory can not only view all Alice—Bob communications but also intercept and
modify it. Alice and Bob perform Diffie-Hellman to agree on a shared symmetric
key K. After the exchange, Bob gets the feeling something went wrong and calls
Alice. He compares his value of K to Alice’s and realizes that they are different.
Explain what Mallory has done and what she can now do.

Solution:

Mallory is performing a man-in-the-middle attack. Mallory pretends to be
Bob when she talks to Alice, and Mallory also pretends to be Alice when she
talks to Bob. In this way, both Alice and Bob are unknowingly talking to
Mallory. Mallory can then decrypt/re-encrypt the traffic in both directions and
modify it however she wishes to.

More technically, when Alice sends A = ga mod p to Bob, Mallory intercepts
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this (preventing it from going to Bob), and sends back to Alice: M = gc mod p.
Now when Alice sends a message to Bob, she uses Kbad = Ma mod p which
Mallory knows as Kbad = Ac mod p. Mallory can then decrypt all messages sent
from Alice. She can also send messages to Alice which Alice thinks are from
Bob. Mallory then does the same trick to Bob.

Question 2 Perfect Forward Secrecy (15 min)
Alice (A) and Bob (B) want to communicate using some shared symmetric key encryption
scheme. Consider the following key exchange protocols which can be used by A and B
to agree upon a shared key, Kab.

El Gamal-Based Key Exchange
Protocol

Message 1 A→ B: {Kab}Kpub
B

Key exchanged

Message 2 A← B: {secret1}Kab

Message 3 A→ B: {secret2}Kab

Diffe-Hellman Key Exchange
Message 1 A→ B: ga mod p
Message 2 A← B: gb mod p

Key exchanged
Kab = gab mod p

Message 3 A← B: {secret1}Kab

Message 4 A→ B: {secret2}Kab

Some additional details:

• Kpub
B is Bob’s long-lived public key.

• All messages are destroyed immediately after reading them.

• Kab and DH exponents a and b are destroyed once all messages are sent.

Eavesdropper Eve records all communications between Alice and Bob, but is unable to
decrypt them. At some point in the future, Eve is lucky and manages to compromise
Bob’s computer.

(a) Is the confidentiality of Alice and Bob’s prior El Gamal-based communication in
jeopardy?

Solution: Yes. The compromise of Bob’s computer gives Eve access to Bob’s
private key, allowing Eve to decrypt the traffic she previously recorded that was
encrypted using Bob’s public key. Once decrypted, she obtains Kab, and can
then apply it to decrypt the traffic encrypted using symmetric key encryption.

(b) What about Alice and Bob’s Diffe-Hellman-based communication?
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Solution: No. Since Alice and Bob destroy the DH exponents a and b after use,
and since the key computed from them itself is never transmitted, there is no
information present on Bob’s computer that Eve can leverage to recover Kab.
This means that with Diffie-Hellman key exchanges, later compromises in no
way harm the confidentiality of previous communication, even if the ciphertext
for that communication was recorded in full. This property is called Perfect
Forward Secrecy.
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Question 3 Why do RSA signatures need a hash? (20 min)
This question explores the design of standard RSA signatures in more depth. To generate
RSA signatures, Alice first creates a standard RSA key pair: (n, e) is the RSA public
key and d is the RSA private key, where n is the RSA modulus. For standard RSA
signatures, we typically set e to a small prime value such as 3; for this problem, let
e = 3.

To generate a standard RSA signature S on a message M , Alice computes S = H(M)d mod
n. If Bob wants to verify whether S is a valid signature on message M , he simply checks
whether S3 = H(M) mod n holds. d is a private key known only to Alice and (n, 3) is
a publicly known verification key that anyone can use to check if a message was signed
using Alice’s private signing key.

Suppose RSA signatures skipped using a hash function and just used M directly, so the
signature S on a message M is S = Md mod n. In other words, if Alice wants to send a
signed message to Bob, she will send (M,S) to Bob, where S = Md mod n is computed
using her private signing key d.

(a) With this simplified RSA scheme, how can Bob verify whether S is a valid signature
on message M? In other words, what equation should he check, to confirm whether
M,S was validly signed by Alice?

Solution: S3 = M mod n.

(b) Mallory learns that Alice and Bob are using the simplified (hash-less) signature
scheme described above and decides to trick Bob. Mallory wants to send some
(M,S) to Bob that Bob will think is from Alice, even though Mallory doesn’t know
the private key. Explain how Mallory can find M,S such that S will be a valid
signature on M .

You should assume that Mallory knows Alice’s public key n, but not Alice’s private
key d. She can choose both M and S freely. The message M does not have to be
chosen in advance and can be gibberish.

Solution: Mallory should choose some random value to be S and then compute
S3 mod n to find the corresponding M value. This M,S pair will satisfy the
equation in part (a).

Alternative solution: Choose M = 1 and S = 1. This will satisfy the
equation.

(c) Is the attack in parts (b) possible against the real RSA signature scheme (the one
that includes the cryptographic hash function)? Why or why not?
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Solution: These attacks are not possible. A hash function is one way, so the
attack in part (b) won’t work: we can pick a random S and cube it, but then
we’d need to find some message M such that H(M) is equal to this value, and
that’s not possible since H is one-way. The attack in part (c) won’t work, since
given H(M), we’d need to find a message M ′ such that H(M ′) = 64 ×H(M),
which is also infeasible (since H is one-way).

Comment: This is why the real RSA signature scheme includes a hash function:
exactly to prevent the attacks you’ve seen in this question.
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