
CS 161: Computer Security

http://inst.eecs.berkeley.edu/~cs161/

January 16, 2017

Prof. Raluca Ada Popa

ROOM

FIRE

CODE

And a team of a talented TAs

Head TAs:

Keyhan and

Won

and talented readers

Jianan Lu

Kijung Kim

Katharine Jiang

Kate Xu

Denis Li

Audrey Ku

Kevin Ma

David Niu

Billy Zhao

Anusha Syed

Riku Miyao

What is Computer Security?

Detects or prevents unwanted use of computer
systems or data

Why security?

Why should you care?

-to-day life
Millions of compromised computers, millions of stolen
passwords, stolen money

It is important for our

physical safety and safety of our possessions

confidentiality of data/ privacy

functionality

Safety

Adversaries can affect our safety by

tampering with pacemakers, planes, cars

Privacy/confidentiality

Adversaries get access to medical, financial,

personal user data, or sensitive corporate data

Pretty much any major company collecting user data

has been hacked

140 million records breached

(containing SSN, names, credit cards)

Computer Science 161 Fall 2016 Popa and Weaver

Can aff s economy

 X

Learn About Security

Make a Difference

Computer security is not only

important but it is

FUN!

- You are playing a game: can you stop the attacker?

- Beautiful blend of analytical thinking (math) and

engineering (build systems)

Computer security is varied

Cryptography

Network security

Operating systems security

Web security

Database security

Distributed systems security

Machine learning and security

Security usability

It has room for many skills Big challenge:

many of you

the expertise in

those areas

Provides a

glimpse of these

disciplines

Tell us what

concepts you

need more

background in

Logistics

Course Structure

Absorb material presented in lectures and
section

Lecture will be webcasted

3 course projects (24% total)

Done individually or in small groups

~4 homeworks (16% total)

Done individually

Two midterms (30%)

A comprehensive final exam (30%)

Textbooks

No required textbook. If you want extra reading:

Optional: Introduction to Computer Security,
Goodrich & Tamassia

Optional: The Craft of System Security, Smith &
Marchesini

Class Policies

Late homework: no credit

Late project: -10% if < 24 hrs, -20% < 48 hrs,

-40% < 72 hrs, no credit hrs

Never read or share solutions, code, etc. with

someone else, nor read past materials: work on

your own (unless assignment states otherwise).

If lecture materials available prior to lecture,

use to answer questions during class

Participate in Piazza
Send course-related questions/comments, or ask in
office hours. No scale.

Ethics

We will be looking for plagiarism, both

manually and using advanced software;

we can identify copy even if not exact,

including from old material or

submissions

We will apply severe penalties including

reporting to Student Conduct office

THREAT MODELS

Threat models

Cannot protect against all possible attackers

High-level goal is risk management
Much of the effort concerns raising the bar and
trading off resources

How to prudently spend your time & money?

Key notion of threat model: what you are
defending against

Determines which defenses are worthwhile

Threats have evolved

l
Spam, pharmaceuticals, credit card theft, identity theft

Threats have evolved

Attackers have become more sophisticated;
arms race between attackers and defenders
fuels rapid innovation in malware

but not all security is an arms race, there are definite
solutions to certain settings

Many attacks aim for profit and are facilitated by
a well-

Threats have evolved

l
Spam, pharmaceuticals, credit card theft, click fraud

Government actors: Stuxnet, Flame, Aurora, Sony

Private activism: Anonymous, Wikileaks

Lesson

To protect computer systems, you must know
your enemy

defenses that are good enough to stop the

2 CLASSICAL EXPLOITS

Epic Hack: Internet worm

The first Internet worm, Morris worm

A grad student experimented (in the lab) with
self-spreading malware

It got out.

Epic Hack: Internet worm

The first Internet worm

A grad student experimented (in the lab) with
self-spreading malware

It got out

And took down the Internet

Epic Hack: Internet worm

The first Internet worm

A grad student experimented (in the lab) with
self-spreading malware

It got out.

And took down the Internet.

There is a lesson here.

Epic Hack: Sarah Palin

Guy wants to mess with

Tries logging into her Yahoo Mail

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Epic Hack: Sarah Palin

Sentenced to 1 year

in federal prison

Lesson: your system is only

as secure as the weakest

link.

Epic Hack: Sarah Palin

Aftermath: in 2012, someone hacks Mitt

Epic Hack: Sarah Palin

Aftermath: in 2012, someone hacks Mitt

Lesson: old attacks remain relevant

Memory safety

#293 HRE-THR 850 1930

ALICE SMITH

COACH

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930

ALICE SMITHHHHHHHHHHH

HHACH

SPECIAL INSTRUX: NONE

How could Alice exploit this?

Find a partner and talk it through.

#293 HRE-THR 850 1930

ALICE SMITH

FIRST

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930

ALICE SMITH

FIRST

SPECIAL INSTRUX: GIVE

PAX EXTRA CHAMPAGNE.

char name[20];

void vulnerable() {
 ...
 gets(name);
 ...
}

char name[20];
char instrux[80] = "none";

void vulnerable() {
 ...
 gets(name);
 ...
}

char name[20];
char instrux[80] = "none";

void vulnerable() {
 ...
 gets(name);
 ...
}

Memory unsafe code

Reading data in name past 20 characters starts overlapping

instrux because name and instrux are stored next to each

other in memory

char line[512];
char command[] = "/usr/bin/finger";

void main() {
 ...
 gets(line);
 ...
 execv(command, ...);
}

char name[20];
int (*fnptr)();

void vulnerable() {
 ...
 gets(name);
 ...
}

char name[20];
int seatinfirstclass = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

char name[20];
int authenticated = 0;

void vulnerable() {
 ...
 gets(name);
 ...
}

Linux (32-bit) process memory layout

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment

(program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF

Stack Frame

user stack

shared

libraries

run time heap

static data

segment

text segment

(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address

stack frame pointer

exception handlers

local variables

callee saved registers

To previous stack
 frame pointer

To the point at which
 this function was called

Frame

corresponding

to function

invocation

Code Injection

main() {
 f();
}

f() {
 int x;
 g();
}

g() {
 char buf[80];
 gets(buf);
}

0xFFFF0000

ret

main()

ret x

f()

ret buf

g()

Stack (return addresses and local variables)

main() {
 f();
}

f() {
 int x;
 g();
}

0xFFFF0000

ret

main()

ret x

f()

ret buf

g()

g() {
 char buf[80];
 gets(buf);
}

Stack (return addresses and local variables)

Basic Stack Exploit

Overwriting the return address allows an
attacker to redirect the flow of program
control.

Instead of crashing, this can allow
arbitrary code to be executed.

Example: attacker chooses malicious
shellcode),

compiles to bytes, includes this in the
input to the program so it will get stored in
memory somewhere, then overwrites
return address to point to it.

void vulnerable() {
 char buf[64];
 ...
 gets(buf);
 ...
}

void safe() {
 char buf[64];
 ...
 fgets(buf, 64, stdin);
 ...
}

void safer() {
 char buf[64];
 ...
 fgets(buf, sizeof buf, stdin);
 ...
}

void vulnerable(int len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

memcpy(void *dst, const void *src, size_t n);

Attack: attacker supplies negative len, which becomes large

value when cast to size_t

void safe(size_t len, char *data) {
 char buf[64];
 if (len > 64)
 return;
 memcpy(buf, data, len);
}

Fix:

void f(size_t len, char *data) {
 char *buf = malloc(len+2);
 if (buf == NULL) return;
 memcpy(buf, data, len);
 buf[len] = '\n';
 buf[len+1] = '\0';
}

Vulnerable!

If len = 0xffffffff, allocates only 1 byte

Is it safe? Talk to your partner.

