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Announcements

• Homework	1	is	out,	due	in	a	week
• Dean	approved	class	expansion,	three	new	
discussion	sections,	stay	tuned	for	details	

• Scraped lecture	slides	available	before	class
• Do	not	use	them	for	answering	in	class

• Full	lecture	slides	available	after	class



Precondition

• A	precondition	for	a	function	f()	is	an	assertion	that	
must	hold	about	the	inputs	to	f

• f()	is	assumed	to	behave	correctly	and	produce	
correct	output	as	long	as	the	precondition	is	met

• The	caller	must	make	sure	the	precondition	is	met
• The	callee (the	code	inside	f()) can	assume	that	the	
precondition	is	met	



Example

/* requires: a != NULL && size(a) >= n && 
for all j in 0..n-1, a[j] != NULL */ 
int sum(int *a[], size_t n) { 

int total = 0; 
size_t i; 
for (i=0; i<n; i++) 

total += *(a[i]); 
return total; 

}  

Q:	What	is	the	precondition?



Example

/* requires: a != NULL && size(a) >= n && 
for all j in 0..n-1, a[j] != NULL && (sumi
*a[i]<=MAX_INT) */ 
int sum(int *a[], size_t n) { 

int total = 0; 
size_t i; 
for (i=0; i<n; i++) 

total += *(a[i]); 
return total; 

}  



Postcondition

• A	postcondition on	f()	is	an	assertion	that	holds	
when	f()	returns

• The	caller	of	f()	can	assume	that	the	postcondition
holds

• f()	must	make	sure	the	postcondition holds



Example

/* ensures: retval != NULL && retval
points to n bytes of memory */ 
void *mymalloc(size_t n) { 

void *p = malloc(n); 
if (!p) { 

perror("Out of memory"); 
exit(1); 
} 
return p; 

}

Q:	What	is	the	postcondition?



Example

/* ensures: retval != NULL && retval
points to n bytes of memory */ 
void *mymalloc(size_t n) { 

void *p = malloc(n); 
if (!p) { 

perror("Out of memory"); 
exit(1); 
} 
return p; 

}



Specification	vs	implementation

• A	function	has	a	specification	=	
precondition+postcondition

• And	an	implementation	that	should	meet	the	
specification:	for	all	inputs	satisfying	the	
precondition,	it	must	satisfy	the	postcondition.



Reasoning	about	code

To	prove	that	a	function	whose	inputs	satisfy	the	
precondition,	matches	the	postcondition,	you	can:
• Write	down	a	precondition	and	postcondition for	
every	line	of	code,	and	prove	this	

• Each	statement’s	postcondition must	imply	the	
precondition	of	the	next	statement.	This	is	an	invariant	
that	is	true	at	any	point	in	time.

• Final	postcondition is	the	postcondition for	the	
function



Invariant	examples

/* requires: n >= 0 */ 
void binpr(int n) { 

char digits[] = "0123456789"; 
while (n != 0) { 

int d = n % 10; 
putchar(digits[d]); 
n = n / 10; 

} 
putchar(’0’); 

} 

/* n >= 0 */ 

/* n>0 */ 

/* 0<=d && d < 10 && n > 0*/ 

/* 0<=d && d<10 && n>=0*/ 



int sumderef(int *a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)

total += *(a[i]);
return total;

}

What	is	the	precondition?



/* requires: a != NULL &&
size(a) >= n &&

???                        */
int sumderef(int *a[], size_t n) {

int total = 0;
for (size_t i=0; i<n; i++)

total += *(a[i]);
return total;

}

What	is	the	precondition?



/* requires: a != NULL &&
size(a) >= n &&
for all j in 0..n-1, a[j] != NULL 

(&& sum *(a[i]) <= MAXINT )*/
int sumderef(int *a[], size_t n) {

int total = 0;
for (size_t i=0; i<n; i++)

total += *(a[i]);
return total;

}

What	is	the	precondition?



char *tbl[N]; /* N > 0, has type int */

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;

return h % N;
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}



char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;

return h % N;
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

What	is	the	correct	postcondition for	hash()?
(a)	0	<=	retval <	N,	(b)	0	<=	retval,
(c)	retval <	N,	(d)	none of the above.
Discuss with a	partner.



char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;

return h % N;
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}
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bool search(char *s) {
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return tbl[i] && (strcmp(tbl[i], s)==0);

}
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;                 /* 0 <= h */
while (*s)                  /* 0 <= h */
h = 257*h + (*s++) + 3;   /* 0 <= h */

return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

Is	the	postcondition correct?
(a)	Yes,	(b)	0	<=	retval is	correct,
(c)	retval <	N	is correct,	(d)	both are wrong.
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/* ensures: 0 <= retval && retval < N */
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;                 /* 0 <= h */
while (*s)                  /* 0 <= h */
h = 257*h + (*s++) + 3;   /* 0 <= h */

return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

What	is	the	correct	postcondition for	hash()?
(a)	0	<=	retval <	N,	(b)	0	<=	retval,
(c)	retval <	N,	(d)	none of the above.
Discuss with a	partner.



char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;                 /* 0 <= h */
while (*s)                  /* 0 <= h */
h = 257*h + (*s++) + 3;   /* 0 <= h */

return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

} Fix?



char *tbl[N];

/* ensures: 0 <= retval && retval < N */
unsigned int hash(char *s) {
unsigned int h = 17;        /* 0 <= h */
while (*s)                  /* 0 <= h */
h = 257*h + (*s++) + 3;   /* 0 <= h */

return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
unsigned int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}



Access	Control	and
OS	Security



Types	of	Security	Properties

• Confidentiality
• Integrity
• Availability



Access	Control
• Some	resources	(files,	web	pages,	…)	are	sensitive.
• How	do	we	limit	who	can	access	them?

• This	is	called	the	access	control problem



Access	Control	Fundamentals
• Subject =	a	user,	process,	…
(someone	who	is	accessing	resources)

• Object =	a	file,	device,	web	page,	…
(a	resource	that	can	be	accessed)

• Policy =	the	restrictions	we’ll	enforce

• access(S,	O)	=	true
if	subject	S is	allowed	to	access	object	O



Example
• access(Alice,	Alice’s	wall)	=	true
access(Alice,	Bob’s	wall)	=	true
access(Alice,	Charlie’s	wall)	=	false

• access(raluca,	/home/cs161/gradebook)	=	true
access(Alice,	/home/cs161/gradebook)	=	false



Access	Control	Matrix
• access(S,	O)	=	true
if	subject	S is	allowed	to	access	object	O

Alice’s wall Bob’s wall Charlie’s 
wall

…

Alice true true false
Bob false true false
…



Permissions
• We	can	have	finer-grained	permissions,
e.g.,	read,	write,	execute.

• access(raluca,		/cs161/grades/alice)	=	{read,	write}
access(alice,	/cs161/grades/alice)	=	{read}
access(bob,		/cs161/grades/alice)	=	{}

/cs161/grades/alice
daw read, write
alice read
bob -



Access	Control
• Authorization:	who	should be	able	to	perform	which	
actions

• Authentication:	verifying	who	is	requesting	the	action



Access	Control
• Authorization:	who	should be	able	to	perform	which	
actions

• Authentication:	verifying	who	is	requesting	the	action	
• Audit:	a	log	of	all	actions,	attributed	to	a	particular	
principal

• Accountability:	hold	people	legally	responsible	for	
actions	they	take.



Web	security

• Let’s	talk	about	how	this	applies	to	web	security…



Structure	of	a	web	application
(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

How	should	we
implement	access
control	policy?



Option	1:	Integrated	Access	Control

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record
username

access 
check

access 
check

access 
check

Record	username.
Check	policy	at	each
place	in	code	that
accesses	data.



Option	2:	Centralized	Enforcement

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record
username

access 
check

Record	username.
Database	checks
policy	for	each
data	access.



Option	1:	Integrated	Access	
Control

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record
username

access 
check

access 
check

access 
check

Record	username.
Check	policy	at	each
place	in	code	that
accesses	data.

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php

...

databasecontroller

record
usernam

e

access 
check

Option	2:	Centralized	
Enforcement

Which	option
would	you	pick?
Discuss.

Record	username.
Database	checks
policy	for	each
data	access.



Analysis
• Centralized	enforcement	might	be	less	prone	to	error

• All	accesses	are	vectored	through	a	central	chokepoint,	
which	checks	access

• If	you	have	to	add	checks	to	each	piece	of	code	that	
accesses	data,	it’s	easy	to	forget	a	check	(and	app	will	work	
fine	in	normal	usage,	until	someone	tries	to	access	
something	they	shouldn’t)

• Integrated	checks	might	be	more	flexible



Complete	mediation
• The	principle:	complete	mediation
• Ensure	that	all	access	to	data	is	mediated	by	
something	that	checks	access	control	policy.

• In	other	words:	the	access	checks	can’t	be	bypassed



If	you	don’t	have	complete	mediation,	
your	access	control	will	fail



Reference	monitor
• A	reference	monitor	is	responsible	for	mediating	all	
access	to	data

• Subject	cannot	access	data	directly;	operations	must	
go	through	the	reference	monitor,	which	checks	
whether	they’re	OK

subject reference
monitor object



Criteria	for	a	reference	monitor

Ideally,	a	reference	monitor	should	be:
• Unbypassable:	all	accesses	go	through	the	reference	
monitor
• Tamper-resistant:	attacker	cannot	subvert	or	take	
control	of	the	reference	monitor	(e.g.,	no	code	
injection)
• Verifiable:	reference	monitor	should	be	simple	
enough	that	it’s	unlikely	to	have	bugs



Example:	OS	memory	protection

• All	memory	accesses	are	mediated	by	memory	
controller,	which	enforces	limits	on	what	memory	
each	process	can	access

CPU memory
controller RAM



TCB

• More	broadly,	the	trusted	computing	base	(TCB)	is	
the	subset	of	the	system	that	has	to	be	correct,	for	
some	security	goal	to	be	achieved

• Example:	the	TCB	for	enforcing	file	access	permissions	
includes	the	OS	kernel	and	filesystem drivers

• Ideally,	TCBs	should	be	unbypassable,	tamper-
resistant,	and	verifiable



Robustness

• Security	bugs	are	a	fact	of	life

• How	can	we	use	access	control	to	improve	the	
security	of	software,	so	security	bugs	are	less	likely	
to	be	catastrophic?



Privilege	separation

• How	can	we	improve	the	security	of	software,	so	
security	bugs	are	less	likely	to	be	catastrophic?

• Answer:	privilege	separation.	Give	each	module	
only	the	privilege	it	needs.	

• In	particular,	architect	the	software	so	it	has	a	separate,	
small	TCB.

• Then	any	bugs	outside	the	TCB	will	not	be	catastrophic.



Naïve	web	browser

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser  Kernel

Rendered  BitmapHTML,  JS,  ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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Web	Browser

Web	Site

Access	
files

Render	
websites

“Drive-by malware”: malicious web page 
exploits a browser bug to read/write local 
files or infect them with a virus

Trusted 
Computing 
Base



The	Chrome	browser

Two pieces: rendering engine and browser kernel

Rendering engine: 
- Interprets HTML and turns it into bitmap image to 

display on screen
- Most bugs are here so it is ran inside a sandbox
- Sandbox isolates the engine from the rest of the 

system, including files,and allows only narrow 
API to the outside 

Browser kernel: 
- Mediates all access to the file system



The	Chrome	browser
file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine

IPC

Browser  Kernel

Rendered  BitmapHTML,  JS,  ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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The	Chrome	browser
file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
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(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.
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Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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Benefit	of	Secure	Design
Browser

Known	unpatched	vulnerabilities
Secunia SecurityFocus

Extremely	critical
(number	/	oldest)

Highly	critical
(number	/	oldest)

Moderately	critical
(number	/	oldest)

Less	critical
(number /	oldest)

Not	critical
(number	/	oldest)

Total
(number	/	oldest)

Internet	Explorer	6 0 0 4
17	November	2004

8
27	February	2004

12
5	June	2003

534
20	November	2000

Internet	Explorer	7 0 0 1
30	October	2006

4
6	June	2006

10
5	June	2003

213
15	August	2006

Internet	Explorer	8 0 0 0 1
26	February	2007

8
5	June	2003

123
14	January	2009

Internet	Explorer	9 0 0 0 0 2
6	December	2011

26
5	March	2011

Firefox	3.6 0 0 0 0 0 1
20	December	2011

Firefox	38 0 0 0 0 0 0

Google Chrome	42 0 0 0 0 0 0

Opera	11 0 0 0 0 1
6	December	2011

2
6	December	2011

Safari	5 0 0 0 1
8	June	2010 0 2

13	December	2011





Discuss	with	a	partner

• How	would	you	architect	mint.com	to	reduce	the	
likelihood	of	a	catastrophic	security	breach?

• E.g.,	where	attacker	steals	all	users’	stored	passwords	or	
empties	out	all	their	bank	accounts	overnight



Summary

• Access	control	is	a	key	part	of	security.

• Privilege	separation	makes	systems	more	robust:	it	
helps	reduce	the	impact	of	security	bugs	in	your	
code.

• Architect	your	system	to	make	the	TCB	
unbypassable,	tamper-resistant,	and	verifiable	
(small).



More	principles	for	designing	more	
secure	software



TL-15



TL-30



TRTL-30



TXTL-60



“Security	is	economics.”



What	does	this	program	do?



What	can this	program	do?

Can	it	delete	all	of	your	files? YES. Why?



“Least	privilege.”



Touchstones	for	Least	Privilege

• When	assessing	the	security	of	a	system’s	design,	identify	the	
Trusted	Computing	Base (TCB).

• What	components	does	security	rely	upon?

• Security	requires	that	the	TCB:
• Is	correct	
• Is	complete (can’t	be	bypassed)
• Is	itself	secure (can’t	be	tampered	with)

• Best	way	to	be	assured	of	correctness	and	its	security?
• KISS =	Keep	It	Simple,	Stupid!
• Generally,	Simple =	Small

• One	powerful	design	approach:	privilege	separation
• Isolate	privileged	operations	to	as	small	a	component	as	possible
• (See	lecture	notes	for	more	discussion)



Check	for	Understanding

• We’ve	seen	that	PC	platforms	grant	applications	a	lot	
of	privileges

• Quiz:	Name	a	platform	that	does	a	better	job	of	least	
privilege





“Ensure	complete	mediation.”



Ensuring	Complete	Mediation

• To	secure	access	to	some	capability/resource,	
construct	a	reference	monitor

• Single	point	through	which	all	access	must	occur
• E.g.:	a	network	firewall

• Desired	properties:
• Un-bypassable (“complete	mediation”)
• Tamper-proof	(is	itself	secure)
• Verifiable	(correct)
• (Note,	just	restatements	of	what	we	want	for	TCBs)

• One	subtle	form	of	reference	monitor	flaw	concerns	
race	conditions …



procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact server to set balance
3. set balance := b - w

4. dispense $w to user

TOCTTOU Vulnerability

TOCTTOU = Time of Check To Time of Use

Balance	could	have	decreased	at	this	point	due	to	another	action



public void buyItem(Account buyer, Item item) {
if (item.cost > buyer.balance)
return;

buyer.possessions.put(item);
buyer.possessionsUpdated();
buyer.balance -= item.cost;
buyer.balanceUpdated();

}









“Division	of	trust.”
- reduce	the	trust	in	each	party




