Code safety (cont'd) && Access control

CS 161: Computer Security

Prof. Raluca Ada Popa

January 23, 2018

Announcements

- Homework 1 is out, due in a week
- Dean approved class expansion, three new discussion sections, stay tuned for details
- Scraped lecture slides available before class
 - Do not use them for answering in class
- Full lecture slides available after class

Precondition

- A precondition for a function *f()* is an assertion that must hold about the inputs to *f*
- f() is assumed to behave correctly and produce correct output as long as the precondition is met
- The caller must make sure the precondition is met
- The callee (the code inside *f()*) can assume that the precondition is met

Example

}

```
Q: What is the precondition?
int sum(int *a[], size t n) {
     int total = 0;
     size t i;
     for (i=0; i<n; i++)</pre>
           total += *(a[i]);
     return total;
```

Example

}

/* requires: a != NULL && size(a) >= n && for all j in 0...n, $a[j] != NULL \&\& (sum_i)$ *a[i]<=MAX INT) */ int sum(int *a[], size t n) { int total = 0;size t i; for (i=0; i<n; i++)</pre> total += *(a[i]); return total;

Postcondition

- A postcondition on *f()* is an assertion that holds when *f()* returns
- The caller of *f()* can assume that the postcondition holds
- *f()* must make sure the postcondition holds

Example

}

```
Q: What is the postcondition?
void *mymalloc(size t n) {
     void *p = malloc(n);
     if (!p) {
          perror("Out of memory");
     exit(1);
     return p;
```

Example

ł

```
/* ensures: retval != NULL && retval
points to n bytes of memory */
void *mymalloc(size t n) {
     void *p = malloc(n);
     if (!p) {
          perror("Out of memory");
     exit(1);
     return p;
```

Specification vs implementation

- A function has a specification = precondition+postcondition
- And an implementation that should meet the specification: for all inputs satisfying the precondition, it must satisfy the postcondition.

Reasoning about code

To prove that a function whose inputs satisfy the precondition, matches the postcondition, you can:

- Write down a precondition and postcondition for every line of code, and prove this
 - Each statement's postcondition must imply the precondition of the next statement. This is an invariant that is true at any point in time.
- Final postcondition is the postcondition for the function

Invariant examples

```
/* requires: n >= 0 */
void binpr(int n) {
      char digits[] = "0123456789"; /* n >= 0 */
      while (n != 0) { /* n>0 */
          int d = n % 10; /* 0<=d && d < 10 && n > 0*/
          putchar(digits[d]);
          n = n / 10; /* 0 <= d \&\& d < 10 \&\& n >= 0*/
      }
      putchar('0');
```

What is the precondition?

int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}</pre>

What is the precondition?

/* requires: a != NULL && size(a) >= n && <u>555</u> int sumderef(int *a[], size t n) { int total = 0; for (size t i=0; i<n; i++)</pre> total += *(a[i]); return total; }

What is the precondition?

```
/* requires: a != NULL &&
     size(a) >= n &&
     for all j in 0...n-1, a[j] != NULL
(&& sum *(a[i]) <= MAXINT )*/
int sumderef(int *a[], size t n) {
    int total = 0;
    for (size t i=0; i<n; i++)</pre>
         total += *(a[i]);
    return total;
```

char *tbl[N]; /* N > 0, has type int */

```
int hash(char *s) {
    int h = 17;
    while (*s)
        h = 257*h + (*s++) + 3;
    return h % N;
}
```

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

```
/* ensures: ??? */
int hash(char *s) {
    int h = 17;
    while (*s)
        h = 257*h + (*s++) + 3;
    return h % N;
}
```

What is the correct postcondition for hash()? (a) 0 <= retval < N, (b) 0 <= retval, (c) retval < N, (d) none of the above. Discuss with a partner.

)

```
/* ensures: 0 <= retval && retval < N */</pre>
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
```

```
/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
                               /* 0 <= h */
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
```

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

Is the postcondition correct? (a) Yes, (b) 0 <= retval is correct, (c) retval < N is correct, (d) both are wrong.

0);

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {</pre>

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

```
bool search(char *s) {
    int i = hash(s);
    return tbl[i] && (strcmp(tbl[i], s)==0);
}
```

bool search(char *s) {
 unsigned int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Access Control and OS Security

Types of Security Properties

- Confidentiality
- Integrity
- Availability

Access Control

- Some resources (files, web pages, ...) are sensitive.
- How do we limit who can access them?
- This is called the *access control* problem

Access Control Fundamentals

- Subject = a user, process, ...
 (someone who is accessing resources)
- *Object* = a file, device, web page, ... (a resource that can be accessed)
- *Policy* = the restrictions we'll enforce
- access(S, O) = true
 if subject S is allowed to access object O

Example

- access(Alice, Alice's wall) = true access(Alice, Bob's wall) = true access(Alice, Charlie's wall) = false
- access(raluca, /home/cs161/gradebook) = true access(Alice, /home/cs161/gradebook) = false

Access Control Matrix

access(S, O) = true
 if subject S is allowed to access object O

	Alice's wall	Bob's wall	Charlie's wall	
Alice	true	true	false	
Bob	false	true	false	

Permissions

- We can have finer-grained permissions, e.g., read, write, execute.
- access(raluca, /cs161/grades/alice) = {read, write} access(alice, /cs161/grades/alice) = {read} access(bob, /cs161/grades/alice) = {}

	/cs161/grades/alice		
daw	read, write		
alice	read		
bob	-		

Access Control

- Authorization: who *should* be able to perform which actions
- Authentication: verifying who is requesting the action

Access Control

- Authorization: who *should* be able to perform which actions
- Authentication: verifying who is requesting the action
- Audit: a log of all actions, attributed to a particular principal
- Accountability: hold people legally responsible for actions they take.

Web security

• Let's talk about how this applies to web security...

Structure of a web application

Option 1: Integrated Access Control

Option 2: Centralized Enforcement

Option 1: Integrated Access Option 2: Centralized Control Enforcement record isernan record sernam (code) (code) /login.php /login access acces check check \leftarrow (code) (code) controller database controller database /friends.php /friends.php access check (code (code) /search.php /search.php access check (code Record username. Which option \mathbf{V} V (code) /viewwall.php Record username. Database checks would you pick? ^{/viewwall.php} policy for each Check policy at each place in code that Discuss. data access. accesses data.

Analysis

- Centralized enforcement might be less prone to error
 - All accesses are vectored through a central chokepoint, which checks access
 - If you have to add checks to each piece of code that accesses data, it's easy to forget a check (and app will work fine in normal usage, until someone tries to access something they shouldn't)
- Integrated checks might be more flexible

Complete mediation

- The principle: complete mediation
- Ensure that all access to data is mediated by something that checks access control policy.
 - In other words: the access checks can't be bypassed

If you don't have complete mediation, your access control will fail

Reference monitor

• A reference monitor is responsible for mediating all access to data

 Subject cannot access data directly; operations must go through the reference monitor, which checks whether they're OK

Criteria for a reference monitor

Ideally, a reference monitor should be:

- Unbypassable: all accesses go through the reference monitor
- Tamper-resistant: attacker cannot subvert or take control of the reference monitor (e.g., no code injection)
- Verifiable: reference monitor should be simple enough that it's unlikely to have bugs

Example: OS memory protection

• All memory accesses are mediated by memory controller, which enforces limits on what memory each process can access

TCB

- More broadly, the trusted computing base (TCB) is the subset of the system that has to be correct, for some security goal to be achieved
 - Example: the TCB for enforcing file access permissions includes the OS kernel and filesystem drivers
- Ideally, TCBs should be unbypassable, tamperresistant, and verifiable

Robustness

- Security bugs are a fact of life
- How can we use access control to improve the security of software, so security bugs are less likely to be catastrophic?

Privilege separation

- How can we improve the security of software, so security bugs are less likely to be catastrophic?
- Answer: privilege separation. Give each module only the privilege it needs.
 - In particular, architect the software so it has a separate, small TCB.
 - Then any bugs outside the TCB will not be catastrophic.

Naïve web browser

exploits a browser bug to read/write local files or infect them with a virus

The Chrome browser

Two pieces: rendering engine and browser kernel

Rendering engine:

- Interprets HTML and turns it into bitmap image to display on screen
- Most bugs are here so it is ran inside a sandbox
- Sandbox isolates the engine from the rest of the system, including files, and allows only narrow API to the outside

Browser kernel:

- Mediates all access to the file system

The Chrome browser

Goal: prevent "drive-by malware", where a malicious web page exploits a browser bug to read/write local files or infect them with a virus

Benefit of Secure Design

	Known unpatched vulnerabilities												
Browser		Secunia											
	Extremely critical (number / oldest)	Highly critical (number / oldest)	Moderately critical (number / oldest)	Less critical (number / oldest)	Not critical (number / oldest)	Total (number / oldest)							
Internet Explorer 6	0	0	4 17 November 2004	8 27 February 2004	12 5 June 2003	534 20 November 2000							
Internet Explorer 7	0	0	1 30 October 2006	4 6 June 2006	10 5 June 2003	213 15 August 2006							
Internet Explorer 8	0	0	0	1 26 February 2007	8 5 June 2003	123 14 January 2009							
Internet Explorer 9	0	0	0	0	2 6 December 2011	26 5 March 2011							
Firefox 3.6	0	0	0	0	0	1 20 December 2011							
Firefox 38	0	0	0	0	0	0							
Google Chrome 42	0	0	0	0	0	0							
Opera 11	0	0	0	0	1 6 December 2011	2 6 December 2011							
Safari 5	0	0	0	1 8 June 2010	0	2 13 December 2011							

BE GOOD WITH YOUR MONEY FROM THE BIG PICTURE 472 TO THE DETAILS THAT MATTER

Effortlessly manage your cash flow, budgets and bills from one place.

SIGN UP FREE

All-in-one? Done

<

From money and budgeting to customized tips and more—get a clear view of your total financial life.

Budgets? You betcha

Effortlessly create budgets that are easy to stick to. We even make a few for you.

Credit? Checked

Find out yours and learn how you can improve it. It's totally free.

Discuss with a partner

- How would you architect mint.com to reduce the likelihood of a catastrophic security breach?
 - E.g., where attacker steals all users' stored passwords or empties out all their bank accounts overnight

Summary

- Access control is a key part of security.
- Privilege separation makes systems more robust: it helps reduce the impact of security bugs in your code.
- Architect your system to make the TCB unbypassable, tamper-resistant, and verifiable (small).

More principles for designing more secure software

TL-30

TRTL-30

TXTL-60

"Security is economics."

B µTorrent 1.7.1

>

File Options Help														
🖪 🎡 🖄 🕽	🖌 🕨 💷 🔺 🗶 🖊	9	0								<sea< th=""><th>arch Here</th><th>></th><th>2</th></sea<>	arch Here	>	2
🕷 All (3)	Name	#	Size	Done	Status	Seeds	Peers	Down Speed	Up Speed	ETA	Uploaded	Ratio	Avail.	Label
🕑 Downloading (3)	OOo_2.2.1_Win32Intel_install_wJ	1	108 MB	75.7%	Downloading	55 (73)	5 (83)	397.5 kB/s	6.6 kB/s	57s	528 kB	0.006	56	
Completed (0)	KNOPPIX_V5.1.1DVD-2007-01-04	2	4.02 GB	0.7%	Downloading	56 (60)	9 (244)	187.0 kB/s	25.3 kB/s	6h 30m	2.95 MB	0.102	56	
Active (2)	🛂 ubuntu-7.04-desktop-i386.iso	3	697 MB	0.0%	Queued	0 (641)	0 (54)			œ	0.0 kB	0.000	0.000	
Inactive (1)														

No Label (3)

What does this program do?

🚺 General 🤔 Peers 🕞 Pieces 💽 Files 🗲 Speed 🔌 Logger

<

IP	Client	Flags	%	Down Speed	Up Speed	Regs	Uploaded	Downloaded	Peer dl.	^
epe-24-92-249-186.twcny.res.rr.com	Azureus/2.5.0.4	d XE	100.0							
🕮 cpe-24-162-126-147.hot.res.rr.com	Transmission 0.80-svn	d IX	100.0	3.1 kB/s				32.0 kB		
24-177-50-115.dhcp.oxfr.ma.charter.com	µTorrent 1.7	d IHXE	100.0					1.64 MB		
24-178-114-166.dhcp.wspn.ga.charter.com	µTorrent 1.6.1	d IHXE	100.0					48.0 kB		
wsp05957058wss.cr.net.cable.rogers.com	KTorrent 2.2rc1	d IHXE	100.0	5.2 kB/s				544 kB		
cust. 13.6.adsl.cistron.nl	µTorrent 1.6.1	D IHXE	100.0	0.4 kB/s		2 0				
epe-66-8-185-105.hawaii.res.rr.com	Azureus/2.5.0.4	d XE	100.0							
66.65.59.37	BitTorrent 5.0.7	d IX	100.0	2.7 kB/s				48.0 kB		
66-214-179-78.dhcp.gldl.ca.charter.com	KTorrent 2.2	IHX	0.0							
67.85.64.225	µTorrent/1.6.0.0	D HXE	100.0	9.5 kB/s		4 0		144 kB		
bas2-stcatharines10-1177764066.dsl.bell.ca	µTorrent 1.6.1	UD HXE	10.8	2.2 kB/s	2.8 kB/s	2 2	512 kB	256 kB	288.2 k	
📟 wsip-70-184-249-191.ok.ok.cox.net	µTorrent 1.6.1	D IHXE	100.0	17.7 kB/s		16 0		2.35 MB		
70.186.189.141	Azureus/3.0.1.6	d XE	100.0							
71-10-91-182.dhcp.roch.mn.charter.com	KTorrent 2.2	d IXE	100.0					16.0 kB		
c-71-63-128-140.hsd1.mn.comcast.net	µTorrent 1.7	D HXE	100.0	10.4 kB/s		4 0		1.98 MB		
adsl-71-131-190-233.dsl.sntc01.pacbell.net	µTorrent 1.6.1	D HXE	100.0	4.7 kB/s		3 0		304 kB		
adsl-71-145-148-192.dsl.austtx.sbcglobal.net	BitTorrent 5.0.7	D IX	100.0	1.0 kB/s		2 0		224 kB		
72.24.208.255	Azureus/2.5.0.4	DS XE	100.0			2 0		32.0 kB		
72.93.219.133	µTorrent/1.6.0.0	d IHXE	100.0							
72.150.126.8	Azureus/3.0.1.6	ud IX	7.4							
ip72-202-139-196.ks.ks.cox.net	µTorrent 1.6.1	D HXE	100.0	2.6 kB/s		3 0		112 kB		
74.0.64.160	Mainline 4.0.1	D TV	100.0	4 9 VR /c		310		176 VR		
	DHT: 278 r	nodes		📀 D: 606.	7 kB/s T: 112.1	MB	U: 33.0 kB/s T: 4.2 MB			

😃 µTorrent 1.7.1

<u>File O</u> ptions <u>H</u> elp														
🖪 🎡 🖄 💈	🗙 🕨 💷 🛋 🝸	N									<sea< th=""><th>rch Here</th><th>></th><th>2</th></sea<>	rch Here	>	2
🕷 All (3)	Name	# Size	Done	Status	Se	eds Pee	ers	Down Speed	Up Speed	ETA	Uploaded	Ratio	Avail.	Label
Downloading (3)	OOo_2.2.1_Win32Intel_install_wJ.	. 1 108 M	B 75.7%	Downloading	55	(73) 5 (8	33)	397.5 kB/s	6.6 kB/s	57s	528 kB	0.006	56	
Completed (0)	KNOPPIX_V5. 1. 1DVD-2007-01-04	2 4.02	B 0.7%	Downloading	56	(60) 9 (24	14)	187.0 kB/s	25.3 kB/s	6h 30m	2.95 MB	0.102	56	
Active (2)	🖸 ubuntu-7.04-desktop-i386.iso	3 697 N	B 0.0%	Queued	0 (41) 0 (9	54)			00	0.0 kB	0.000	0.000	

No Label (3)

What *can* this program do?

<			Ш]		>
🚺 General 🤔 Peers 🕞 Pieces 🔃 Files 🗲 Speed	🔌 Logger									
IP	Client	Flags	%	Down Speed	Up Speed	Regs	Uploaded	Downloaded	Peer dl.	<u>^</u>
	Anumerica (2, 5, 0, 4	J VE	100.0		-					
Φφ			c.					-		
Can it delete	all of v		^ †I			VF9		Vhy		_
	un or y	Uui						viiy.		
ws										
cust. 13.6.adsl.cistron.nl	µTorrent 1.6.1	D IHXE	100.0	0.4 kB/s		2 0				
cpe-66-8-185-105.hawaii.res.rr.com	Azureus/2.5.0.4	d XE	100.0							
66.65.59.37	BitTorrent 5.0.7	d IX	100.0	2.7 kB/s				48.0 kB		
66-214-179-78.dhcp.gldl.ca.charter.com	KTorrent 2.2	IHX	0.0							
67.85.64.225	µTorrent/1.6.0.0	D HXE	100.0	9.5 kB/s		4 0		144 kB		
bas2-stcatharines10-1177764066.dsl.bell.ca	µTorrent 1.6.1	UD HXE	10.8	2.2 kB/s	2.8 kB/s	2 2	512 kB	256 kB	288.2 k	
wsip-70-184-249-191.ok.ok.cox.net	µTorrent 1.6.1	D IHXE	100.0	17.7 kB/s		16 0		2.35 MB		
70. 186. 189. 141	Azureus/3.0.1.6	d XE	100.0							
71-10-91-182.dhcp.roch.mn.charter.com	KTorrent 2.2	d IXE	100.0					16.0 kB		
c-71-63-128-140.hsd1.mn.comcast.net	µTorrent 1.7	D HXE	100.0	10.4 kB/s		4 0		1.98 MB		
adsl-71-131-190-233.dsl.sntc01.pacbell.net	µTorrent 1.6.1	D HXE	100.0	4.7 kB/s		3 0		304 kB		
adsl-71-145-148-192.dsl.austtx.sbcglobal.net	BitTorrent 5.0.7	D IX	100.0	1.0 kB/s		2 0		224 kB		
72.24.208.255	Azureus/2.5.0.4	DS XE	100.0			2 0		32.0 kB		
72.93.219.133	µTorrent/1.6.0.0	d IHXE	100.0							
72.150.126.8	Azureus/3.0.1.6	ud IX	7.4							
ip72-202-139-196.ks.ks.cox.net	µTorrent 1.6.1	D HXE	100.0	2.6 kB/s		3 0		112 kB		
74 0 64 160	Mainline 4 0 1		100.0	4 9 VR/e		310		176 VR		<u> </u>
	DHT: 278	3 nodes		🕑 D: 606.	7 kB/s T: 112.1	L MB		U: 33.0 kB/s T	: 4.2 MB	
				-						

"Least privilege."

Touchstones for Least Privilege

- When assessing the security of a system's design, identify the *Trusted Computing Base* (**TCB**).
 - What components does security rely upon?
- Security requires that the TCB:
 - Is correct
 - Is complete (can't be bypassed)
 - Is itself secure (can't be tampered with)
- Best way to be assured of correctness and its security?
 - **KISS** = Keep It Simple, Stupid!
 - Generally, Simple = Small
- One powerful design approach: privilege separation
 - Isolate privileged operations to as small a component as possible
 - (See lecture notes for more discussion)

Check for Understanding

- We've seen that PC platforms grant applications a lot of privileges
- Quiz: Name a platform that does a better job of least privilege

"Ensure complete mediation."

Ensuring Complete Mediation

- To secure access to some capability/resource, construct a *reference monitor*
- Single point through which all access must occur
 - E.g.: a network firewall
- Desired properties:
 - Un-bypassable ("complete mediation")
 - Tamper-proof (is itself secure)
 - Verifiable (correct)
 - (Note, just restatements of what we want for TCBs)
- One subtle form of reference monitor flaw concerns *race conditions* ...

procedure withdrawal(w)

- // contact central server to get balance
- 1. let b := balance

2. if b < w, abort

Balance could have decreased at this point due to another action

- // contact server to set balance
- 3. set balance := b w

4. dispense \$w to user

TOCTTOU = Time of Check To Time of Use

```
public void buyItem(Account buyer, Item item) {
    if (item.cost > buyer.balance)
        return;
    buyer.possessions.put(item);
    buyer.possessionsUpdated();
    buyer.balance -= item.cost;
    buyer.balanceUpdated();
}
```


NO LONE ZONE SAC TWO MAN POLICY MANDATORY

DO NOT KEY RTHX IX L/D EXCEPT IN CASE OF AN EMERGENCY-MUST BE AT LEAST 3FT FROM MSL

- "Division of trust."
- reduce the trust in each party

