
Securing Internet
Communication: TLS, cont’d

Network security

CS 161: Computer Security
Prof. Raluca Ada Popa

Feb 27, 2018

Some slides credit David Wagner

Announcements
• Midterm grades released
• Regrades: Read the follow-ups on the threads to make

sure your regrade request is somewhat warranted.
• No public repos for projects
• DSP letters
• Midterm 2 will be the Wed after spring break (Apr 4).

• Project 2 is live, it has 3 parts. Prizes given!
• Do not cheat. We have good tools and caught students

already.

• Intro to Networking session Tuesday 8-10 at the Woz.

Certificates

•Browser compares domain name in cert w/ URL
– Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer
– These are hardwired into the browser – and trusted!
– There could be a chain of these …

•Browser applies issuer’s public key to verify
signature S, obtaining hash of what issuer signed
– Compares with its own SHA-256 hash of Amazon’s cert

•Assuming hashes match, now have high
confidence it’s indeed Amazon …
– assuming signatory is trustworthy = assuming didn’t lose

private key; assuming
didn’t sign thoughtlessly

Certificates

•Want to use root CA as little as possible, access to
the root key should be very infrequent

•Certificate chain:
– Verisign can give a certificate to Google for google.com
– Google can issue a certificate for finance.google.com

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?
– (maybe by breaking crummy WEP security)
– But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning gives client wrong IP
address
– Client goes to wrong server
– But: detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic
– But: data receiver rejects it due to failed integrity check

• No problem!

Powerful Protections, cont.

• Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
– But: they can’t read; we detect impersonation

• No problem!

• Attacker slips in as a Man In The Middle?
– But: they can’t read, they can’t inject
– They can’t even replay previous encrypted traffic
– No problem!

Validating Amazon’s Identity, cont.

•Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

•What if browser can’t find a cert for the issuer?

Validating Amazon’s Identity, cont.

•Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

•What if browser can’t find a cert for the issuer?
• If it can’t find the cert, then warns the user that site
has not been verified
– Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose if
we incorrectly trust that the site is whom we think?

•A: All of them!
– Goodbye confidentiality, integrity, authentication
– Man in the middle attacker can read everything, modify,

impersonate

SSL / TLS Limitations
•Properly used, SSL / TLS provides powerful
end-to-end protections

•So why not use it for everything??
• Issues:

– Cost of public-key crypto (fairly minor)
o Takes non-trivial CPU processing (but today a minor issue)
o Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)

SSL / TLS Limitations
•Properly used, SSL / TLS provides powerful
end-to-end protections

•So why not use it for everything??
• Issues:

– Cost of public-key crypto (fairly minor)
o Takes non-trivial CPU processing (but today a minor issue)
o Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)
– Integrating with other sites that don’t use HTTPS
– Latency: extra round trips ⇒ 1st page slower to load

SSL / TLS Limitations, cont.
•Problems that SSL / TLS does not take care of ?

•TCP-level denial of service
– SYN flooding
– RST injection

o (but does protect against data injection!)

• SQL injection / XSS / server-side coding/logic flaws
•Vulnerabilities introduced by server inconsistencies

SSL / TLS Limitations, cont.
•Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws
•Vulnerabilities introduced by server inconsistencies

Regular web surfing: http: URL

So no integrity - a MITM
attacker can alter pages
returned by server …

And when we click here …
… attacker has changed the corresponding link so
that it’s ordinary http rather than https!

We never get a chance to use TLS’s protections! :-(

“sslstrip” attack

SSL / TLS Limitations, cont.
•Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws
•Vulnerabilities introduced by server inconsistencies
•Browser coding/logic flaws
•User flaws

– Weak passwords
– Phishing

• Issues of trust …

TLS/SSL Trust Issues

•User has to make correct trust decisions …

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

TLS/SSL Trust Issues, cont.
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …

This appears to be a
fully valid cert using
normal browser
validation rules.

Only detected by
Chrome due to its
recent introduction of
cert “pinning” –
requiring that certs
for certain domains
must be signed by
specific CAs rather
than any generally
trusted CA

TLS/SSL Trust Issues
• “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …
• … and it’s not just their diligence & security that

matters …
– “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

Conclusion

• Use SSL/TLS to secure
communications end-to-end

• Relies on trustworthiness of certificates

Network Security
- intro to networking

- network attacks

CS 161: Computer Security
Prof. Raluca Ada Popa

February 27, 2018

Some slides credit David Wagner.

Networking overview

Pay attention to this material (part of 168) because you
will need this to understand it for the class

There will be a review session too

Local-Area Networks

37

point-to-point shared

How does computer A send a
message to computer C?

A C

Local-Area Networks (LAN): Packets

38

Source: A
Destination: C
Message: Hello world!

CA

Hello world!

A C Hello world!

Wide-Area Networks

39

How do we connect two LANs?router

A

C

Wide-Area Networks

40

How do we connect two LANs?router

C.comA.com

Hello
world!

A RA

C
C.comA.com

Hello
world!

R C

C.comA.com

Hello
world!

41

Key Concept #1: Protocols

• A protocol is an agreement on how to
communicate

• Includes syntax and semantics
– How a communication is specified & structured

o Format, order messages are sent and received
– What a communication means

o Actions taken when transmitting, receiving, or timer expires

• Example: making a comment in lecture?
1. Raise your hand.
2. Wait to be called on.
3. Or: wait for speaker to pause and vocalize
4. If unrecognized (after timeout): say “excuse me”

42

Key Concept #2: Dumb Network

• Original Internet design: interior nodes (“routers”)
have no knowledge* of ongoing connections going
through them

• Not how you picture the telephone system works
– Which internally tracks all of the active voice calls

• Instead: the postal system!
– Each Internet message (“packet”) self-contained
– Interior “routers” look at destination address to forward
– If you want smarts, build it “end-to-end”, not “hop-by-hop”
– Buys simplicity & robustness at the cost of shifting

complexity into end systems
* Today’s Internet is full of hacks that violate this

Self-Contained IP Packet Format

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload (remainder of message)
.
.
.
.
.

Header is like a
letter envelope:
contains all info
needed for
delivery

IP = Internet Protocol

44

Key Concept #2: Dumb Network

• Original Internet design: interior nodes (“routers”)
have no knowledge* of ongoing connections going
through them

• Not: how you picture the telephone system works
– Which internally tracks all of the active voice calls

• Instead: the postal system!
– Each Internet message (“packet”) self-contained
– Interior routers look at destination address to forward
– If you want smarts, build it “end-to-end”, not “hop-by-hop”
– Buys simplicity & robustness at the cost of shifting

complexity into end systems
* Today’s Internet is full of hacks that violate this

45

Key Concept #3: Layering

• Internet design is strongly partitioned into layers
– Each layer relies on services provided by next layer

below …
– … and provides services to layer above it

• Analogy:
– Consider structure of an

application you’ve written
and the “services” each
layer relies on / provides

Code You Write

Run-Time Library

System Calls

Device Drivers

Voltage Levels /
Magnetic Domains}Fully

isolated
from user
programs

46

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Note on a point of potential confusion: these
diagrams are always drawn with lower layers
below higher layers …

But diagrams showing the layouts of packets
are often the opposite, with the lower layers
at the top since their headers precede those
for higher layers

47

Horizontal View of a Single Packet

Link Layer
Header

(Inter)Network
Layer Header

(IP)

Transport
Layer

Header

Application Data: structure
depends on the application

…

First bit transmitted

48

Vertical View of a Single Packet

Link Layer Header

(Inter)Network Layer
Header (IP)

Transport Layer Header

First bit transmitted

Application Data:
structure depends on the

application
.
.
.
.
.
.
.

49

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

50

Layer 1: Physical Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Encoding bits to send them
over a single physical link
 e.g. patterns of
 voltage levels /
 photon intensities /
 RF modulation

51

Layer 2: Link Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Framing and transmission of a
collection of bits into individual
messages sent across a single
“subnetwork” (one physical
technology)

Might involve multiple physical
links (e.g., modern Ethernet)

Often technology supports
broadcast transmission (every
“node” connected to subnet
receives)

52

Layer 3: (Inter)Network Layer (IP)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

• Provides global addressing

Works across different link
technologies

}Different for each
Internet “hop”

53

Layer 4: Transport Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication
between processes

Different services provided:
 TCP = reliable byte stream
 UDP = unreliable datagrams

(Datagram = single packet message)

54

Layer 7: Application Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Communication of whatever
you wish

Can use whatever
transport(s) is convenient

Freely structured

E.g.:
 Skype, SMTP (email),
 HTTP (Web), Halo, BitTorrent

55

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

}Implemented only at hosts,
not at interior routers
(“dumb network”)

56

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1 }Implemented everywhere

57

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1 }Different for each
Internet “hop”

~Same for each Internet “hop”}

58

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

59

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

Different Physical & Link Layers (Layers 1 & 2)

E.g., Wi-Fi

E.g., Ethernet

60

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

Same Network / Transport / Application Layers (3/4/7)
(Routers ignore Transport & Application layers)

E.g., HTTP over TCP over IP

61

Layer 3: (Inter)Network Layer (IP)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

• Provides global addressing

Works across different link
technologies

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies the length of the entire
IP packet: bytes in this header
plus bytes in the Payload

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies how to interpret the
start of the Payload, which is
the header of a Transport
Protocol such as TCP or UDP

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

66

IP Packet Header (Continued)

•Two IP addresses
–Source IP address (32 bits)
–Destination IP address (32 bits)

•Destination address
–Unique identifier/locator for the receiving host
–Allows each node to make forwarding decisions

•Source address
–Unique identifier/locator for the sending host
–Recipient can decide whether to accept packet
–Enables recipient to send a reply back to source

67

Postal Envelopes:

(Post office doesn’t
look at the letter
inside the envelope)

68

Analogy of IP to Postal Envelopes:

(Routers don’t look at
the payload beyond
the IP header)

IP source
address

IP destination
address

69

IP: “Best Effort ” Packet Delivery

•Routers inspect destination address, locate “next
hop” in forwarding table
– Address = ~unique identifier/locator for the receiving host

•Only provides a “I’ll give it a try” delivery service:
– Packets may be lost
– Packets may be corrupted
– Packets may be delivered out of order

source destination

IP network

70

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to
build services our apps need out of IP’s modest
layer-3 service

71

Layer 4: Transport Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication
between processes

Different services provided:
 TCP = reliable byte stream
 UDP = unreliable datagrams

(Datagram = single packet message)

72

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to
build services our apps need out of IP’s modest
layer-3 service

•#1 workhorse: TCP (Transmission Control Protocol)
•Service provided by TCP:

– Connection oriented (explicit set-up / tear-down)
o End hosts (processes) can have multiple concurrent long-lived

communication
– Reliable, in-order, byte-stream delivery

o Robust detection & retransmission of lost data

73

TCP “Bytestream” Service

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process A on host H1

Process B
on host H2

B
yte 80

B
yte 80

Hosts don’t ever see packet boundaries, lost
or corrupted packets, retransmissions, etc.

74

Bidirectional communication:

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process B on host H2

Process A
on host H1

B
yte 73

B
yte 73

There are two separate bytestreams, one in
each direction

75

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

76

TCP Header

Ports are
associated
with OS
processes

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

77

TCP Header

Ports are
associated
with OS
processes

IP source & destination
addresses plus TCP
source and destination
ports uniquely identifies
a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

(IP Header)

(Link Layer Header)

78

TCP Header

Ports are
associated
with OS
processes

IP source & destination
addresses plus TCP
source and destination
ports uniquely identifies
a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
Some port numbers are
“well known” / reserved
e.g. port 80 = HTTP

79

TCP Header

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

80

TCP Header

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Byte streams
numbered
independently in
each direction

81

TCP Header

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Byte stream
numbered
independently in
each direction

Sequence number assigned to start
of byte stream is picked when
connection begins; doesn’t start at 0

82

TCP Header

Acknowledgment
gives seq # just
beyond highest
seq. received in
order.

If sender sends
N bytestream
bytes starting at
seq S then “ack”
for it will be S+N.

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

83

Sequence Numbers

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number from A

= 1st byte of
data

ACK sequence
number from B

= next expected
byte

84

TCP Header

Uses include:

acknowledging
data (“ACK”)

setting up (“SYN”)
and closing
connections
(“FIN” and “RST”)

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

85

Establishing a TCP Connection

•Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence

numbers”) to host B
– Host B returns a SYN acknowledgment (SYN+ACK)
– Host A sends an ACK to acknowledge the SYN+ACK

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its
Initial Sequence

Number (ISN) to the
other host.

(Spec says to pick based
on local clock)

86

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()

listen()

accept()

Different starting
initial sequence

numbers (ISNs) in
each direction

87

Layer 7: Application Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Communication of whatever
you wish

Can use whatever
transport(s) is convenient

Freely structured

E.g.:
 Skype, SMTP (email),
 HTTP (Web), Halo, BitTorrent

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Web (HTTP) Request
Method Resource HTTP version Headers

Data (if POST; none for GET)

Blank line

GET: download data. POST: upload data.

HTTP/1.0 200 OK
Date: Sun, 19 Apr 2009 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Sat, 18 Apr 2009 17:39:05 GMT
Set-Cookie: session=44eb; path=/servlets
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

Web (HTTP) Response

HTTP version Status code Reason phrase Headers

Data

90

Host Names vs. IP addresses

•Host names
–Examples: www.cnn.com and bbc.co.uk
–Mnemonic name appreciated by humans
–Variable length, full alphabet of characters
–Provide little (if any) information about location

•IP addresses
–Examples: 64.236.16.20 and 212.58.224.131
–Numerical address appreciated by routers
–Fixed length, binary number
–Hierarchical, related to host location

Networking Attacks:
Link-, IP-, and TCP-layer

attacks

92

General Communication Security Goals: CIA

•Confidentiality:
– No one can read our data / communication unless we

want them to

• Integrity
– No one can manipulate our data / processing /

communication unless we want them to

•Availability
– We can access our data / conduct our processing /

use our communication capabilities when we want to

No security built in at the network level

•Everything you have seen in this lecture is just
plaintext, to integrity attached to it so an attacker
can easily spoof packets at multiple levels

•TLS will give application level security

93

Link-layer threats

94

• Confidentiality: eavesdropping (aka sniffing)
• Integrity: injection of spoofed packets
• Availability: delete legit packets (e.g., jamming)

95

Layers 1 & 2: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Encoding bits to send them
over a single physical link
 e.g. patterns of
 voltage levels /
 photon intensities /
 RF modulation

Framing and transmission of a
collection of bits into individual
messages sent across a single
“subnetwork” (one physical
technology)

96

Eavesdropping

• For subnets using broadcast technologies (e.g.,
WiFi, some types of Ethernet), eavesdropping
comes for “free”
– Each attached system’s NIC (= Network Interface Card)

can capture any communication on the subnet
– Some handy tools for doing so

o tcpdump / windump (low-level ASCII printout)
o Wireshark (GUI for displaying 800+ protocols)

97

TCPDUMP: Packet Capture & ASCII Dumper

98

Wireshark: GUI for Packet Capture/Exam.

99

Wireshark: GUI for Packet Capture/Exam.

100

Wireshark: GUI for Packet Capture/Exam.

101

Stealing Photons

102

103

• If attacker sees a packet he doesn’t like, he
can jam it (integrity)

• Attacker can also overwhelm link-layer
signaling, e.g., jam WiFi’s RF (denial-of-service)

Link-Layer Threat: Disruption

104

• If attacker sees a packet he doesn’t like, he
can jam it (integrity)

• Attacker can also overwhelm link-layer
signaling, e.g., jam WiFi’s RF (denial-of-service)

• There’s also the heavy-handed approach …

Link-Layer Threat: Disruption

105

106

• Attacker can inject spoofed packets, and lie
about the source address

Link-Layer Threat: Spoofing

M C Hello world!D

107

• With physical access to a local network,
attacker can create any message they like
– When with a bogus source address: spoofing

• When using a typical computer, may require
root/administrator to have full freedom

• Particularly powerful when combined with
eavesdropping
– Because attacker can understand exact state of

victim’s communication and craft their spoofed
traffic to match it

– Spoofing w/o eavesdropping = blind spoofing

Physical/Link-Layer Threats: Spoofing

108

On-path vs Off-path Spoofing

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

On-path

Off-path

109

• On-path attackers can see victim’s traffic ⇒
spoofing is easy

• Off-path attackers can’t see victim’s traffic
– They have to resort to blind spoofing
– Often must guess/infer header values to

succeed
o We then care about work factor: how hard is this

– But sometimes they can just brute force
o E.g., 16-bit value: just try all 65,536 possibilities!

• When we say an attacker “can spoof”, we usually
mean “w/ reasonable chance of success”

Spoofing on the Internet

110

Layer 3: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

PayloadIP = Internet Protocol

111

• Can set arbitrary source address
– “Spoofing” - receiver has no idea who you are
– Could be blind, or could be coupled w/ sniffing
– Note: many attacks require two-way communication

o So successful off-path/blind spoofing might not suffice

• Can set arbitrary destination address
– Enables “scanning” – brute force searching for hosts

• Can send like crazy (flooding)
– IP has no general mechanism for tracking overuse
– IP has no general mechanism for tracking consent
– Very hard to tell where a spoofed flood comes from!

• If attacker can manipulate routing, can bring traffic
to themselves for eavesdropping (not easy)

IP-Layer Threats

DNS Service

•Runs Domain Name Servers

•Translates domain names google.com to IP
addresses

•When user browser wants to contact google.com, it
first contacts a DNS to find out the IP address for
google.com and then sends a packet to that IP
address

•More in future lectures..

112

113

LAN Bootstrapping: DHCP

•New host doesn’t have an IP address yet
– So, host doesn’t know what source address to use

•Host doesn’t know who to ask for an IP address
– So, host doesn’t know what destination address to use

•Solution: shout to “discover” server that can help
– Broadcast a server-discovery message (layer 2)
– Server(s) sends a reply offering an address

host host host...

DHCP server

114

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP

offer

DHCP ACK

DHCP request(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

115

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP

offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)Threats?

116

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP

offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker on same
subnet can hear
new host’s DHCP

request

117

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP

offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker can race the actual
server; if they win, replace DNS

server and/or gateway router

118

• Substitute a fake DNS server
– Redirect any of a host’s lookups to a machine of

attacker’s choice

• Substitute a fake gateway router
– Intercept all of a host’s off-subnet traffic

o (even if not preceded by a DNS lookup)
– Relay contents back and forth between host and

remote server and modify however attacker chooses

• An invisible Man In The Middle (MITM)
– Victim host has no way of knowing it’s happening

o (Can’t necessarily alarm on peculiarity of receiving multiple
DHCP replies, since that can happen benignly)

• How can we fix this?

DHCP Threats

Hard

119

TCP

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

120

TCP

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses
define a given connection

121

TCP

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Defines where this
packet fits within the
sender’s bytestream

122

TCP Conn. Setup & Data Exchange
Client (initiator)

IP address 1.2.1.2, port 3344
Server

IP address 9.8.7.6, port 80
SrcA=1.2.1.2, SrcP=3344,DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80,

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344,DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344,

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

123

TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker),
attacker can inject data into any TCP connection
– Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)
– In general means to take over an already-established connection!

• We are toasted if an attacker can see our TCP traffic!
– Because then they immediately know the port & sequence numbers

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

124

TCP Data Injection
Client (initiator)

IP address 1.2.1.2, port 3344
Server

IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80,
DstA=1.2.1.2, DstP=3344,

ACK, Seq = y+1, Ack = x+16
Data=“200 OK … <poison> …”

Client
dutifully

processes
as server’s
response

125

TCP Data Injection
Client (initiator)

IP address 1.2.1.2, port 3344
Server

IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80,
DstA=1.2.1.2, DstP=3344,

ACK, Seq = y+1, Ack = x+16
Data=“200 OK … <poison> …”Client

ignores
since

already
processed
that part of
bytestream

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344,

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

126

TCP Threat: Disruption

• Q: Is it possible for an on-path attacker to shut
down a TCP connection if they can see our
traffic?

• A: YES: they can infer the port and sequence
numbers – they can insert fake data, too!
(Great Firewall of China)

127

TCP Threat: Blind Hijacking

• Q: Is it possible for an off-path attacker to inject
into a TCP connection even if they can’t see our
traffic?

• A: YES: if somehow they can infer or guess the
port and sequence numbers

128

TCP Threat: Blind Spoofing

• Q: Is it possible for an off-path attacker to create
a fake TCP connection, even if they can’t see
responses?

• A: YES: if somehow they can infer or guess the
TCP initial sequence numbers

• Why would an attacker want to do this?
– Perhaps to leverage a server’s trust of a given client as

identified by its IP address
– Perhaps to frame a given client so the attacker’s

actions during the connections can’t be traced back to
the attacker

129

Blind Spoofing on TCP Handshake
Alleged Client (not actual)

IP address 1.2.1.2, port N/A
Server

IP address 9.8.7.6, port 80

Blind
Attacker SrcA=1.2.1.2, SrcP=5566,

DstA=9.8.7.6, DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80,

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1,

Data = “GET /transfer-money.html”

130

Blind Spoofing on TCP Handshake
Alleged Client (not actual)
IP address 1.2.1.2, port NA

Server
IP address 9.8.7.6, port 80

Blind
Attacker SrcA=1.2.1.2, SrcP=5566,

DstA=9.8.7.6, DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80,

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives
this, will be confused ⇒ send a RST back
to server …
… So attacker may need to hurry!

131

Blind Spoofing on TCP Handshake
Alleged Client (not actual)
IP address 1.2.1.2, port NA

Server
IP address 9.8.7.6, port 80

Blind
Attacker SrcA=1.2.1.2, SrcP=5566,

DstA=9.8.7.6, DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80,

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t
get to see this packet!

132

Blind Spoofing on TCP Handshake
Alleged Client (not actual)

IP address 1.2.1.2, port N/A
Server

IP address 9.8.7.6, port 80

Blind
Attacker SrcA=1.2.1.2, SrcP=5566,

DstA=9.8.7.6, DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80,

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker
figure out what value of y
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1,

Data = “GET /transfer-money.html”

133

Reminder: Establishing a TCP Connection

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its
Initial Sequence

Number (ISN) to the
other host.

(Spec says to pick based on
local clock)

Hmm, any way
for the attacker
to know this?

Sure – make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a
(Pseudo)-Random ISN

134

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject (spoof) data into either direction by forging data packets
– Works because they can include in their spoofed traffic the

correct sequence numbers (both directions) and TCP ports
– Remains a major threat today

Summary of TCP Security Issues

135

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject (spoof) data into either direction by forging data packets
– Works because they can include in their spoofed traffic the

correct sequence numbers (both directions) and TCP ports
– Remains a major threat today

• If attacker could predict the ISN chosen by a server,
could “blind spoof” a connection to the server
– Makes it appear that host ABC has connected, and has sent data

of the attacker’s choosing, when in fact it hasn’t
– Undermines any security based on trusting ABC’s IP address
– Allows attacker to “frame” ABC or otherwise avoid detection
– Fixed (mostly) today by choosing random ISNs

Summary of TCP Security Issues

136

• No security against on-path attackers
– Can sniff, inject packets, mount TCP spoofing, TCP

hijacking, man-in-the-middle attacks
– Typical example: wireless networks, malicious network

operator

• More security against off-path attackers
– TCP is more secure than UDP and IP

Summary of IP security

137

Extra Material

138

• Normally, TCP finishes (“closes”) a connection by
each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct* sequence

number

TCP Threat: Disruption

139

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

140

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen

R
S
T

0

Checksum Urgent pointer

Options (variable)

Data

141

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B
– E.g., because app. process on A crashed
– (Could instead be that B sends a RST to A)

• Assuming that the sequence numbers in the RST fit with what B
expects, That’s It:
– B’s user-level process receives: ECONNRESET
– No further communication on connection is possible

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B X

142

• Normally, TCP finishes (“closes”) a connection by
each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct* sequence

number

• So: if attacker knows ports & sequence numbers,
can disrupt any TCP connection

TCP Threat: Disruption

143

TCP RST Injection
Client (initiator)

IP address 1.2.1.2, port 3344
Server

IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80,
DstA=1.2.1.2, DstP=3344,

RST, Seq = y+1, Ack = x+16

Client
dutifully
removes

connection

144

TCP RST Injection
Client (initiator)

IP address 1.2.1.2, port 3344
Server

IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344,

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Attacker
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80,
DstA=1.2.1.2, DstP=3344,

RST, Seq = y+1, Ack = x+16

X

Client
rejects

since no
active

connection

145

Threats to Comm. Security Goals

• Attacks can subvert each type of goal
– Confidentiality: eavesdropping / theft of information
– Integrity: altering data, manipulating execution (e.g., code

injection)
– Availability: denial-of-service

• Attackers can also combine different types of attacks
towards an overarching goal
– E.g. use eavesdropping (confidentiality) to construct a spoofing

attack (integrity) that tells a server to drop an important
connection (denial-of-service)

146

TCP’s Rate Management

Unless there’s loss, TCP doubles data in flight every
“round-trip”. All TCPs expected to obey (“fairness”).
Mechanism: for each arriving ack for new data,
increase allowed data by 1 maximum-sized packet

D0-99 A100
D100-199

D200-299 A200A300 D D D D

1 2 43

A A A A

8

E.g., suppose maximum-sized packet = 100 bytes

Src

Dest
Time

147

Protocol Cheating

How can the destination (receiver) get data to come
to them faster than normally allowed?

D0-99

Src

Dest

1

A25
A50

A75 A100

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

ACK-Splitting: each ack, even though partial, increases
allowed data by one maximum-sized packet

Time
Change rule to require
“full” ack for all data
sent in a packet

148

Protocol Cheating

How can the destination (receiver) still get data to
come to them faster than normally allowed?

D0-99

Src

Dest

1

A100
A200

A300 A400

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

Opportunistic ack’ing: acknowledge data not yet seen!

Time

149

• Approach #1: if you receive an ack for data you
haven’t sent, kill the connection
– Works only if receiver acks too far ahead

• Approach #2: follow the “round trip time” (RTT)
and if ack arrives too quickly, kill the connection
– Flaky: RTT can vary a lot, so you might kill innocent

connections

• Approach #3: make the receiver prove they
received the data
– Add a nonce (“random” marker) & require receiver to

include it in ack. Kill connections w/ incorrect nonces
o (nonce could be function computed over payload, so sender

doesn’t explicitly transmit, only implicitly)

Keeping Receivers Honest

Note: a protocol change

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

151

IP Packet Header Fields (Continued)

•Total length (16 bits)
– Number of bytes in the packet
– Maximum size is 65,535 bytes (216 -1)
– … though underlying links may impose smaller limits

•Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

•End host reassembles to recover original packet
•Fragmentation information (32 bits)

– Packet identifier, flags, and fragment offset
– Supports dividing a large IP packet into fragments
– … in case a link cannot handle a large IP packet

152

Example: E-Mail Message Using MIME

From: jrex@cs.princeton.edu
To: feamster@cc.gatech.edu
Subject: picture of my cat
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

Base64 encoded data ….
JVBERi0xLjMNJeLjz9MNMSAwI
.........................
......base64 encoded data

type and subtype

method used
to encode data

MIME version

encoded data

153

Example With Received Header
Return-Path: <casado@cs.stanford.edu>
Received: from ribavirin.CS.Princeton.EDU (ribavirin.CS.Princeton.EDU [128.112.136.44])
 by newark.CS.Princeton.EDU (8.12.11/8.12.11) with SMTP id k04M5R7Y023164
 for <jrex@newark.CS.Princeton.EDU>; Wed, 4 Jan 2006 17:05:37 -0500 (EST)
Received: from bluebox.CS.Princeton.EDU ([128.112.136.38])
 by ribavirin.CS.Princeton.EDU (SMSSMTP 4.1.0.19) with SMTP id M2006010417053607946
 for <jrex@newark.CS.Princeton.EDU>; Wed, 04 Jan 2006 17:05:36 -0500
Received: from smtp-roam.Stanford.EDU (smtp-roam.Stanford.EDU [171.64.10.152])
 by bluebox.CS.Princeton.EDU (8.12.11/8.12.11) with ESMTP id k04M5XNQ005204
 for <jrex@cs.princeton.edu>; Wed, 4 Jan 2006 17:05:35 -0500 (EST)
Received: from [192.168.1.101] (adsl-69-107-78-147.dsl.pltn13.pacbell.net [69.107.78.147])
 (authenticated bits=0)
 by smtp-roam.Stanford.EDU (8.12.11/8.12.11) with ESMTP id k04M5W92018875
 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT);
 Wed, 4 Jan 2006 14:05:32 -0800
Message-ID: <43BC46AF.3030306@cs.stanford.edu>
Date: Wed, 04 Jan 2006 14:05:35 -0800
From: Martin Casado <casado@cs.stanford.edu>
User-Agent: Mozilla Thunderbird 1.0 (Windows/20041206)
MIME-Version: 1.0
To: jrex@CS.Princeton.EDU
CC: Martin Casado <casado@cs.stanford.edu>
Subject: Using VNS in Class
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

155

IP Packet Header Fields

•Version number (4 bits)
– Indicates the version of the IP protocol
– Necessary to know what other fields to expect
– Typically “4” (for IPv4), and sometimes “6” (for IPv6)

•Header length (4 bits)
– Number of 32-bit words in the header
– Typically “5” (for a 20-byte IPv4 header)
– Can be more when IP options are used

•Type-of-Service (8 bits)
– Allow packets to be treated differently based on needs
– E.g., low delay for audio, high bandwidth for bulk transfer

156

Sample Email (SMTP) interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: From: alice@crepes.fr
 C: To: hamburger-list@burger-king.com
 C: Subject: Do you like ketchup?
 C:
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Email header

Email body

Lone period marks end of message

