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Quick detour to ARP 
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Link layer 

• Units of transmission are data frames 
• Every device that connects to a network has 

a network interface which has an Identifier 
called MAC address (Media Access Control)  
– MAC adress is a 48-bit identifier: 01:2B:A3:20:A2:5B 

• MAC addresses can be changed by software 
through the network driver so not considered 
reliable identification 



Link layer 

• Data frames at the link layer are sent to 
MAC addresses not IP addresses 



ARP protocol (Address Resolution Protocol) 

• When a packet needs to be forwarded at a link 
layer on a local area network, the sender has a 
destination IP but needs the MAC address of the 
destination 

• So sender broadcasts an ARP request 
• Example: 

– “I have MAC X. Who has IP address 192.100.0.0”? 
– The machine with that IP address sends a reply in a 

frame addressed to the sender: 
   “For X: 192.100.0.0 is at 00:12:B7:93:21:A2” 

• Answer is cached in the ARP cache by receiver  



ARP spoofing 

• It does not have any authentication  
• So what can an attacker do? 

– Spoof replies to ARP requests 
“192.100.0.0 is at 01:82:A1:93:21:A2” 

• Any machine receiving an ARP reply 
even without request updates the ARP 
cache 
 
 



Man-in-the-middle attack on ARP 

How would you do a cache poisoning 
MITM attack on ARP? 
• Eve sends ARP reply to Alice to associate 

Bob’s IP address to Eve’s MAC 
• Eve sends ARP reply to Bob to associate 

Alice’s IP address with Eve’s MAC 
• Eve can then observe or modify traffic 



How would you do a DoS on ARP? 

• Eve sends ARP replies to Alice 
mapping relevant IP addresses to 
inexistent or bad MACs 



How to address ARP spoofing attacks? 

Some ideas: 
• Have only trusted users have access to a 

local network 
• Multiple occurrences of the same MAC 

address on a LAN (local-area network) can 
be an indication 

• Static ARP tables: admin specifies the ARP 
cache at a device and this does not change 
(inconvenient) 



Back to IDS  
(intrusion detection system) 



Network Intrusion Detection (NIDS) 
• Passively monitor network traffic for signs 

of attack at perimeter of a network 
– Look for certain rules (e.g., /etc/passwd) 
– Flag a warning to an administrator, do not take 

preemptive action 

Internet Internal 
Network 

NIDS 

Monitor sees a copy 
of incoming/outgoing 
HTTP traffic 
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NIDS rules set 

• A set of rules (string matching, regular 
expression) that identifies an attack 

• Example rule: 
– “any flow containing /etc/password should 

be flagged” 
– “any flow containing attack.exe should be 

flagged” 



What does a NIDS aim to detect? 

Examples: 
• Port scans:  information gathering intended 

to determine which ports are open for 
TCPconnections 

• DoS attacks 
• Malware (replicating malicious software) 
• DNS cache poisoning 
• ARP spoofing 



Network Intrusion Detection (NIDS) 
• NIDS has a table of all active connections, 

and maintains state for each 
– e.g., has it seen a partial match of /etc/passwd? 

 
• When it sees a new packet not associated 

with any known connection, it creates a new 
connection: when NIDS starts it doesn’t 
know what connections might be existing 
– Meant to be simply added in the network without 

disrupting 



Evasion 

Evasion attacks can arise when you have 
“double parsing”  

 
• Inconsistency – interpreted differently 

 
• Ambiguity – information needed to interpret 

is missing 
 

Or when you attack the IDS 



Evasion Attacks (High-Level View) 
 

• Some evasions reflect incomplete analysis 
– In our FooCorp example, hex escapes or “..////.//../” alias 
– In principle, can deal with these with implementation 

care (make sure we fully understand the spec) 
 

• Some are due to imperfect observability 
– For instance, if what NIDS sees doesn’t exactly match 

what arrives at the destination  
 

• Some are due to attacking the IDS itself  



Evasion 

• What should NIDS do if it sees a RST 
packet? 
 
 
 

(a)Assume RST will be received 
(b)Assume RST won’t be received 
(c)Other (please specify) 

NIDS 

/etc/p 

RST 

Safer to consider both 
possibilities 
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Evasion 

• What should NIDS do if it sees this? 
 
 
 

(a)Alert – it’s an attack 
(b)No alert – it’s all good 
(c)Other (please specify) 

NIDS 

/%65%74%63/%70%61%73%73%77%64 

This can be /etc/passwd depending 
on what protocol parses this, 
ideally it would realize it is an 
attack and alert 

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png


Evasion 

How can you mount a DoS on the IDS? 
• Send so many attacks that matches 

rules to the IDS making the IDS log so 
much data that it becomes slow or runs 
out of resources  

• Or fake new connections so the IDS 
creates new state 



Structure of 
FooCorp Web Services 

Internet 

Remote client 

FooCorp’s 
border router 

FooCorp 
Servers 

Front-end web server 

 bin/amazeme -p xxx 

2. GET /amazeme.exe?profile=xxx 

8. 200 OK 
    Output of bin/amazeme 
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At least two types of IDS  

• NIDS: sits in the network 
• HIDS: sits at the end host 



Network Intrusion Detection 

• Approach #1: look at the network traffic 
– (a “NIDS”: rhymes with “kids”) 
– Scan HTTP requests 
– Look for “/etc/passwd” and/or “../../” 
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Network Intrusion Detection 
• Approach #1: look at the network traffic 

– (a “NIDS”: rhymes with “kids”) 
– Scan HTTP requests 
– Look for “/etc/passwd” and/or “../../” 

• Pros: 
– No need to touch or trust end systems 

• Can “bolt on” security 
– Cheap: cover many systems w/ single monitor 
– Cheap: centralized management 



Network-Based Detection 

• Issues: 
– Scan for “/etc/passwd”? 

• What about other sensitive files? 
– Scan for “../../”? 

• Sometimes seen in legit. requests (= false positive) 
• What about “%2e%2e%2f%2e%2e%2f”? (= evasion) 

– It needs to do full HTTP parsing 
• What about “..///.///..////”? 

– It needs to understand Unix filename semantics too! 

– What if it’s HTTPS and not HTTP? 
• Need access to decrypted text / session key – yuck! 



Host-based Intrusion Detection 

• Approach #2: instrument the web server 
– Host-based IDS  (sometimes called “HIDS”) 
– Resides on a single system and monitors activity 

on that machine (e.g., OS calls, system logs) 
and monitors abnormal activity 

– Use heuristics for what is considered to be 
abnormal activity, e.g., accessing system logs 

– Scan arguments sent to back-end programs 
• Look for “/etc/passwd” and/or “../../” 



Structure of 
FooCorp Web Services 

Internet 

Remote client 

FooCorp’s 
border router 

FooCorp 
Servers 

Front-end web server 

4. amazeme.exe? 
profile=xxx 

bin/amazeme -p xxx 

HIDS instrumentation 
added inside here 

6.  Output of bin/amazeme sent back 
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HIDS  
• HIDS attempt #1: scan for arguments sent to back-end 

programs 
• Look for “/etc/passwd” and/or “../../” 

• Pros: 
– No problems with HTTP complexities like %-escapes 
– Works for encrypted HTTPS! (because it gets decrypted 

at endpoint host) 
• Issues: 

– Have to add code to each (possibly different) web server 
• And that effort only helps with detecting web server attacks 

– Still have to consider Unix filename semantics (“..////.//”) 
– Still have to consider other sensitive files 



Add system Call Monitoring to HIDS 
• HIDS attempt #2: monitor system call activity 

of backend processes 
– Look for access to /etc/passwd which is a sys 

call 



Structure of 
FooCorp Web Services 

Internet 

Remote client 

FooCorp’s 
border router 

FooCorp 
Servers 

Front-end web server 

 5. bin/amazeme -p xxx 

Real-time monitoring of 
system calls accessing files 
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System Call Monitoring (HIDS) 
• Approach #4: monitor system call activity of 

backend processes 
– Look for access to /etc/passwd 

• Pros: 
– No issues with any HTTP complexities 
– May avoid issues with filename tricks 
– Attack only leads to an “alert” if attack succeeded 

• Sensitive file was indeed accessed 

• Issues: 
– Maybe other processes make legit accesses to the 

sensitive files (false positives) 
– Maybe we’d like to detect attempts even if they fail? 

• “situational awareness” 



Log Analysis 
• HIDS attempt #3: each night, script runs to analyze 

log files generated by web servers 
– Again scan arguments sent to back-end programs 



Structure of 
FooCorp Web Services 

Internet 

Remote client 

FooCorp’s 
border router 

FooCorp 
Servers 

Front-end web server 

 bin/amazeme -p xxx 

Nightly job runs on this 
system, analyzing logs 
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Log Analysis 
• HIDS attempt #3: each night, script runs to analyze log files 

generated by web servers 
– Again scan arguments sent to back-end programs 

• Pros: 
– Cheap: web servers generally already have such logging facilities 

built into them  
– No problems like %-escapes, encrypted HTTPS since it is at the 

web application level 
• Issues: 

– Again must consider filename tricks, other sensitive files 
– Can’t block attacks & prevent from happening 
– Detection delayed, so attack damage may compound 
– If the attack is a compromise, then malware might be able to alter 

the logs before they’re analyzed 
• (Not a problem for directory traversal information leak example) 



Typical HIDS 

• A combination of the three attempts, 
monitor system calls, program inputs 
and system logs. The more information 
the better. 



Detection Accuracy 
• Two types of detector errors: 

– False positive (FP): alerting about a problem when in 
fact there was no problem 

– False negative (FN): failing to alert about a problem 
when in fact there was a problem 

• Detector accuracy is often assessed in terms of 
rates at which these occur: 
– Define Ι to be the event of an instance of intrusive 

behavior occurring (something we want to detect)  
– Define Α to be the event of detector generating alarm 

• Define: 
– False positive rate = P[Α|¬Ι] 
– False negative rate = P[¬Α| Ι] 



Perfect Detection 
• Is it possible to build a detector for our example 

with a false negative rate of 0%? 
• Algorithm to detect bad URLs with 0% FN rate: 

void my_detector_that_never_misses(char *URL) 
{ 
    printf("yep, it's an attack!\n"); 
} 

– In fact, it works for detecting any bad activity with no 
false negatives!  Woo-hoo! 

 
• Wow, so what about a detector for bad URLs that 

has NO FALSE POSITIVES?! 
– printf("nope, not an attack\n"); 



Detection Tradeoffs 
• The art of a good detector is achieving an 

effective balance between FPs and FNs 
• Suppose our detector has an FP rate of 

0.1% and an FN rate of 2%.  Is it good 
enough?  Which is better, a very low FP rate 
or a very low FN rate? 
– Depends on the cost of each type of error … 

• E.g., FP might lead to paging a duty officer and 
consuming hour of their time; FN might lead to $10K 
cleaning up compromised system that was missed 

– … but also critically depends on the rate at 
which actual attacks occur in your environment 



Base Rate Fallacy 
• Suppose our detector has a FP rate of 0.1% (!) 

and a FN rate of 2% (not bad!) 
• Scenario #1: our server receives 1,000 URLs/day, 

and 5 of them are attacks 
– Expected # FPs each day = 0.1% * 995 ≈ 1 
– Expected # FNs each day = 2% * 5 = 0.1    (< 1/week) 
– Pretty good! 

• Scenario #2: our server receives 10,000,000 
URLs/day, and 5 of them are attacks 
– Expected # FPs each day ≈ 10,000 :-( 

• Nothing changed about the detector; only our 
environment changed 
– Accurate detection very challenging when base rate of activity 

we want to detect is quite low 



Styles of Detection: Signature-Based 
• Idea: look for activity that matches the structure of 

a known attack 
• Example (from the freeware Snort NIDS): 

alert tcp $EXTERNAL_NET any -> $HOME_NET 
139 flow:to_server,established 

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|" 
msg:"EXPLOIT x86 linux samba overflow" 
reference:bugtraq,1816 
reference:cve,CVE-1999-0811 
classtype:attempted-admin 

• Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs 



Signature-Based Detection 
• E.g. for FooCorp, search for “../../” or “/etc/passwd” 
• What’s nice about this approach? 

– Conceptually simple 
– Takes care of known attacks (of which there are zillions) 
– Easy to share signatures, build up libraries 

• What’s problematic about this approach? 
– Blind to novel attacks 
– Might even miss variants of known attacks (“..///.//../”) 

• Of which there are zillions 
– Simpler versions look at low-level syntax, not semantics 

• Can lead to weak power (either misses variants, or generates 
lots of false positives) 



Vulnerability Signatures 
• Idea: don’t match on known attacks, match on known 

problems 
• Example (also from Snort): 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80  
uricontent: ".ida?"; nocase; dsize: > 239;  
msg:"Web-IIS ISAPI .ida attempt" 
reference:bugtraq,1816 
reference:cve,CAN-2000-0071 
classtype:attempted-admin 

• That is, match URIs that invoke *.ida?*, have more than 
239 bytes of payload 

• This example detects any* attempt to exploit a particular 
buffer overflow in IIS web servers 
– Used by the “Code Red” worm 
* (Note, signature is not quite complete) 



Vulnerability Signatures 
• What’s nice about this approach? 

– Conceptually fairly simple 
– Takes care of known attacks 
– Easy to share signatures, build up libraries 
– Can detect variants of known attacks 
– Much more concise than per-attack signatures 

• What’s problematic? 
– Can’t detect novel attacks (new vulnerabilities) 
– Signatures can be hard to write / express 

• Can’t just observe an attack that works … 
• … need to delve into how it works 

Benefits of attack signatures 



Styles of Detection: Anomaly-Based 
• Idea: attacks look peculiar. 
• High-level approach: develop a model of normal 

behavior (say based on analyzing historical logs).  
Flag activity that deviates from it. 

• FooCorp example: maybe look at distribution of 
characters in URL parameters, learn that some are 
rare and/or don’t occur repeatedly 
– If we happen to learn that ‘.’s have this property, then 

could detect the attack even without knowing it exists 
• Big benefit: potential detection of a wide range of 

attacks, including novel ones 



Anomaly Detection 
• What’s problematic about this approach? 

– Can fail to detect known attacks 
– Can fail to detect novel attacks, if don’t happen 

to look peculiar along measured dimension 
– What happens if the historical data you train on 

includes attacks? 
– Base Rate Fallacy particularly acute: if 

prevalence of attacks is low, then you’re more 
often going to see benign outliers 

• High FP rate 
• OR: require such a stringent deviation from “normal” 

that most attacks are missed (high FN rate) 
Hard to make work well - not widely used today 



Specification-Based Detection 
• Idea: don’t learn what’s normal; specify what’s 

allowed 
• FooCorp example: decide that all URL parameters 

sent to foocorp.com servers must have at most 
one ‘/’ in them 
– Flag any arriving param with > 1 slash as an attack 

• What’s nice about this approach? 
– Can detect novel attacks 
– Can have low false positives 

• If FooCorp audits its web pages to make sure they comply  

• What’s problematic about this approach? 
– Expensive: lots of labor to derive specifications 

• And keep them up to date as things change (“churn”) 



Styles of Detection: Behavioral 
• Idea: don’t look for attacks, look for evidence of compromise 

 
• FooCorp example: inspect all output web traffic for any lines 

that match a passwd file 
• Example for monitoring user shell keystrokes: 

 unset HISTFILE  (don’t save bash history) 

• Example for catching code injection: look at sequences of 
system calls, flag any that prior analysis of a given program 
shows it can’t generate 
– E.g., observe process executing read(), open(), write(), fork(), 

exec()    … 
– … but there’s no code path in the (original) program that calls those 

in exactly that order! 



Behavioral-Based Detection 
• What’s nice about this approach? 

– Can detect a wide range of novel attacks 
– Can have low false positives 

• Depending on degree to which behavior is distinctive  
• E.g., for system call profiling: no false positives! 

– Can be cheap to implement 
• E.g., system call profiling can be mechanized 

• What’s problematic about this approach? 
– Post facto detection: discovers that you definitely have a 

problem, w/ no opportunity to prevent it 
– Brittle: for some behaviors, attacker can maybe avoid it 

• Easy enough to not type “unset HISTFILE” 
• How could they evade system call profiling? 

– Mimicry: adapt injected code to comply w/ allowed call sequences 



The Problem of Evasion 
 

• For any detection approach, we need to consider 
how an adversary might (try to) elude it 
– Note: even if the approach is evadable, it can still be 

useful to operate in practice 
– But: if it’s very easy to evade, that’s especially 

worrisome (security by obscurity) 
 

 



The Problem of Evasion 
• Imperfect observability is particularly acute for 

network monitoring 
• Consider detecting occurrences of the (arbitrary) 

string “root” inside a network connection … 
– We get a copy of each packet, how hard can it be? 



Detecting “root”: Attempt #1 

• Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’ 
o Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters … 

 
 …….….root………..………… 1 

Oops: TCP doesn’t preserve text boundaries 

Are we done? 

Packet 

…….….ro 1 

Packet #1 

ot………..………… 
2 

Packet #2 Fix? 



Detecting “root”: Attempt #2 
• Okay: remember match from end of previous packet 

 
 

Oops: IP doesn’t guarantee in-order arrival 

ot………..………… 
2 

…….….ro 1 ? 

- Now we’re managing state :-( 
  Are we done? 

…….….ro 1 

Packet #1 

When 2nd packet arrives, continue working on the match 

ot………..………… 
Packet #2 

2 

+ 



• Fix? 
 

• We need to reassemble the entire TCP bytestream 
– Match sequence numbers 
– Buffer packets with later data (above a sequence “hole”) 

• Issues? 
– Potentially requires a lot of state 
– Plus: attacker can cause us to exhaust state by sending 

lots of data above a sequence hole 
 

• But at least we’re done, right? 

Detecting “root”: Attempt #3 



Full TCP Reassembly is Not Enough 
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• Fix? 
• Idea: NIDS can alert upon seeing a retransmission 

inconsistency (two packets for same seqno), as surely it 
reflects someone up to no good 

• This doesn’t work well in practice: TCP retransmissions 
broken in this fashion occur in live traffic 
– Fairly rare (23 times in a day of ICSI traffic) 
– But real evasions much rarer still (Base Rate Fallacy) 
⇒  This is a general problem with alerting on such ambiguities 

• Idea: if NIDS sees such a connection, kill it 
– Works for this case, since benign instance is already fatally broken 
– But for other evasions, such actions have collateral damage 

• Idea: rewrite traffic to remove ambiguities 
– Works for network- & transport-layer ambiguities 
– But must operate in-line and at line speed 

Inconsistent TCP Retransmissions 



Summary of Evasion Issues 

• Evasions arise from uncertainty (or incompleteness) 
because detector must infer behavior/processing it can’t 
directly observe 
– A general problem any time detection separate from potential target 

• One general strategy: impose canonical form (“normalize”) 
– E.g., rewrite URLs to expand/remove hex escapes  
– E.g., enforce blog comments to only have certain HTML tags  

• (Another strategy: analyze all possible interpretations rather 
than assuming one 
– E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …) 

• Another strategy: fix the basic observation problem 
– E.g., monitor directly at end systems  



Inside a Modern HIDS (“AV”) 
• URL/Web access blocking: 

– Prevent users from going to known bad locations 
• Protocol scanning of network traffic (esp. HTTP) 

– Detect & block known attacks 
– Detect & block known malware communication 

• Payload scanning 
– Detect & block known malware 

• (Auto-update of signatures for these) 
• Cloud queries regarding reputation 

– Who else has run this executable and with what results? 
– What’s known about the remote host / domain / URL? 



Inside a Modern HIDS 
• Sandbox execution 

– Run selected executables in constrained/monitored 
environment 

– Analyze: 
• System calls 
• Changes to files / registry 
• Self-modifying code (polymorphism/metamorphism) 

• File scanning 
– Look for malware that installs itself on disk 

• Memory scanning 
– Look for malware that never appears on disk 

• Runtime analysis 
– Apply heuristics/signatures to execution behavior 



Inside a Modern NIDS 
• Deployment inside network as well as at border 

– Greater visibility, including tracking of user identity 
• Full protocol analysis 

– Including extraction of complex embedded objects 
– In some systems, 100s of known protocols 

• Signature analysis (also behavioral) 
– Known attacks, malware communication, blacklisted 

hosts/domains 
– Known malicious payloads 
– Sequences/patterns of activity 

• Shadow execution (e.g., Flash, PDF programs) 
• Extensive logging (in support of forensics) 
• Auto-update of signatures, blacklists 



NIDS vs. HIDS 
• NIDS benefits: 

– Can cover a lot of systems with single deployment 
• Much simpler management 

– Easy to “bolt on” / no need to touch end systems 
– Doesn’t consume production resources on end systems 
– Harder for an attacker to subvert / less to trust 

• HIDS benefits: 
– Can have direct access to semantics of activity 

• Better positioned to block (prevent) attacks 
• Harder to evade 

– Can protect against non-network threats 
– Visibility into encrypted activity 
– Performance scales much more readily (no chokepoint) 

• No issues with “dropped” packets 



Summary of Key Concepts for Detection 

• Signature-based vs anomaly detection 
(blacklisting vs whitelisting) 

• Evasion attacks 
• Evaluation metrics: False positive rate, false 

negative rate 
• Base rate problem 
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