
Detecting Attacks

CS 161: Computer Security
Prof. Raluca Ada Popa

March 13, 2018

Quick detour to ARP

Recall the layers stack

Application data

TCP data TCP
header

IP data IP
header

frame data frame
header

frame
footer

Link
Layer

IP Layer

Transport Layer

Application Layer

Link layer

• Units of transmission are data frames
• Every device that connects to a network has

a network interface which has an Identifier
called MAC address (Media Access Control)
– MAC adress is a 48-bit identifier: 01:2B:A3:20:A2:5B

• MAC addresses can be changed by software
through the network driver so not considered
reliable identification

Link layer

• Data frames at the link layer are sent to
MAC addresses not IP addresses

ARP protocol (Address Resolution Protocol)

• When a packet needs to be forwarded at a link
layer on a local area network, the sender has a
destination IP but needs the MAC address of the
destination

• So sender broadcasts an ARP request
• Example:

– “I have MAC X. Who has IP address 192.100.0.0”?
– The machine with that IP address sends a reply in a

frame addressed to the sender:
 “For X: 192.100.0.0 is at 00:12:B7:93:21:A2”

• Answer is cached in the ARP cache by receiver

ARP spoofing

• It does not have any authentication
• So what can an attacker do?

– Spoof replies to ARP requests
“192.100.0.0 is at 01:82:A1:93:21:A2”

• Any machine receiving an ARP reply
even without request updates the ARP
cache

Man-in-the-middle attack on ARP

How would you do a cache poisoning
MITM attack on ARP?
• Eve sends ARP reply to Alice to associate

Bob’s IP address to Eve’s MAC
• Eve sends ARP reply to Bob to associate

Alice’s IP address with Eve’s MAC
• Eve can then observe or modify traffic

How would you do a DoS on ARP?

• Eve sends ARP replies to Alice
mapping relevant IP addresses to
inexistent or bad MACs

How to address ARP spoofing attacks?

Some ideas:
• Have only trusted users have access to a

local network
• Multiple occurrences of the same MAC

address on a LAN (local-area network) can
be an indication

• Static ARP tables: admin specifies the ARP
cache at a device and this does not change
(inconvenient)

Back to IDS
(intrusion detection system)

Network Intrusion Detection (NIDS)
• Passively monitor network traffic for signs

of attack at perimeter of a network
– Look for certain rules (e.g., /etc/passwd)
– Flag a warning to an administrator, do not take

preemptive action

Internet Internal
Network

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

NIDS rules set

• A set of rules (string matching, regular
expression) that identifies an attack

• Example rule:
– “any flow containing /etc/password should

be flagged”
– “any flow containing attack.exe should be

flagged”

What does a NIDS aim to detect?

Examples:
• Port scans: information gathering intended

to determine which ports are open for
TCPconnections

• DoS attacks
• Malware (replicating malicious software)
• DNS cache poisoning
• ARP spoofing

Network Intrusion Detection (NIDS)
• NIDS has a table of all active connections,

and maintains state for each
– e.g., has it seen a partial match of /etc/passwd?

• When it sees a new packet not associated

with any known connection, it creates a new
connection: when NIDS starts it doesn’t
know what connections might be existing
– Meant to be simply added in the network without

disrupting

Evasion

Evasion attacks can arise when you have
“double parsing”

• Inconsistency – interpreted differently

• Ambiguity – information needed to interpret

is missing

Or when you attack the IDS

Evasion Attacks (High-Level View)

• Some evasions reflect incomplete analysis
– In our FooCorp example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation

care (make sure we fully understand the spec)

• Some are due to imperfect observability
– For instance, if what NIDS sees doesn’t exactly match

what arrives at the destination

• Some are due to attacking the IDS itself

Evasion

• What should NIDS do if it sees a RST
packet?

(a)Assume RST will be received
(b)Assume RST won’t be received
(c)Other (please specify)

NIDS

/etc/p

RST

Safer to consider both
possibilities

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Evasion

• What should NIDS do if it sees this?

(a)Alert – it’s an attack
(b)No alert – it’s all good
(c)Other (please specify)

NIDS

/%65%74%63/%70%61%73%73%77%64

This can be /etc/passwd depending
on what protocol parses this,
ideally it would realize it is an
attack and alert

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Evasion

How can you mount a DoS on the IDS?
• Send so many attacks that matches

rules to the IDS making the IDS log so
much data that it becomes slow or runs
out of resources

• Or fake new connections so the IDS
creates new state

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK
 Output of bin/amazeme

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

At least two types of IDS

• NIDS: sits in the network
• HIDS: sits at the end host

Network Intrusion Detection

• Approach #1: look at the network traffic
– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

8. 200 OK
 Output of bin/amazeme

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png
http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Network Intrusion Detection
• Approach #1: look at the network traffic

– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

• Pros:
– No need to touch or trust end systems

• Can “bolt on” security
– Cheap: cover many systems w/ single monitor
– Cheap: centralized management

Network-Based Detection

• Issues:
– Scan for “/etc/passwd”?

• What about other sensitive files?
– Scan for “../../”?

• Sometimes seen in legit. requests (= false positive)
• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

– It needs to do full HTTP parsing
• What about “..///.///..////”?

– It needs to understand Unix filename semantics too!

– What if it’s HTTPS and not HTTP?
• Need access to decrypted text / session key – yuck!

Host-based Intrusion Detection

• Approach #2: instrument the web server
– Host-based IDS (sometimes called “HIDS”)
– Resides on a single system and monitors activity

on that machine (e.g., OS calls, system logs)
and monitors abnormal activity

– Use heuristics for what is considered to be
abnormal activity, e.g., accessing system logs

– Scan arguments sent to back-end programs
• Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

HIDS
• HIDS attempt #1: scan for arguments sent to back-end

programs
• Look for “/etc/passwd” and/or “../../”

• Pros:
– No problems with HTTP complexities like %-escapes
– Works for encrypted HTTPS! (because it gets decrypted

at endpoint host)
• Issues:

– Have to add code to each (possibly different) web server
• And that effort only helps with detecting web server attacks

– Still have to consider Unix filename semantics (“..////.//”)
– Still have to consider other sensitive files

Add system Call Monitoring to HIDS
• HIDS attempt #2: monitor system call activity

of backend processes
– Look for access to /etc/passwd which is a sys

call

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

System Call Monitoring (HIDS)
• Approach #4: monitor system call activity of

backend processes
– Look for access to /etc/passwd

• Pros:
– No issues with any HTTP complexities
– May avoid issues with filename tricks
– Attack only leads to an “alert” if attack succeeded

• Sensitive file was indeed accessed

• Issues:
– Maybe other processes make legit accesses to the

sensitive files (false positives)
– Maybe we’d like to detect attempts even if they fail?

• “situational awareness”

Log Analysis
• HIDS attempt #3: each night, script runs to analyze

log files generated by web servers
– Again scan arguments sent to back-end programs

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

Nightly job runs on this
system, analyzing logs

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

Log Analysis
• HIDS attempt #3: each night, script runs to analyze log files

generated by web servers
– Again scan arguments sent to back-end programs

• Pros:
– Cheap: web servers generally already have such logging facilities

built into them
– No problems like %-escapes, encrypted HTTPS since it is at the

web application level
• Issues:

– Again must consider filename tricks, other sensitive files
– Can’t block attacks & prevent from happening
– Detection delayed, so attack damage may compound
– If the attack is a compromise, then malware might be able to alter

the logs before they’re analyzed
• (Not a problem for directory traversal information leak example)

Typical HIDS

• A combination of the three attempts,
monitor system calls, program inputs
and system logs. The more information
the better.

Detection Accuracy
• Two types of detector errors:

– False positive (FP): alerting about a problem when in
fact there was no problem

– False negative (FN): failing to alert about a problem
when in fact there was a problem

• Detector accuracy is often assessed in terms of
rates at which these occur:
– Define Ι to be the event of an instance of intrusive

behavior occurring (something we want to detect)
– Define Α to be the event of detector generating alarm

• Define:
– False positive rate = P[Α|¬Ι]
– False negative rate = P[¬Α| Ι]

Perfect Detection
• Is it possible to build a detector for our example

with a false negative rate of 0%?
• Algorithm to detect bad URLs with 0% FN rate:

void my_detector_that_never_misses(char *URL)
{
 printf("yep, it's an attack!\n");
}

– In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

• Wow, so what about a detector for bad URLs that

has NO FALSE POSITIVES?!
– printf("nope, not an attack\n");

Detection Tradeoffs
• The art of a good detector is achieving an

effective balance between FPs and FNs
• Suppose our detector has an FP rate of

0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?
– Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

– … but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy
• Suppose our detector has a FP rate of 0.1% (!)

and a FN rate of 2% (not bad!)
• Scenario #1: our server receives 1,000 URLs/day,

and 5 of them are attacks
– Expected # FPs each day = 0.1% * 995 ≈ 1
– Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)
– Pretty good!

• Scenario #2: our server receives 10,000,000
URLs/day, and 5 of them are attacks
– Expected # FPs each day ≈ 10,000 :-(

• Nothing changed about the detector; only our
environment changed
– Accurate detection very challenging when base rate of activity

we want to detect is quite low

Styles of Detection: Signature-Based
• Idea: look for activity that matches the structure of

a known attack
• Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Signature-Based Detection
• E.g. for FooCorp, search for “../../” or “/etc/passwd”
• What’s nice about this approach?

– Conceptually simple
– Takes care of known attacks (of which there are zillions)
– Easy to share signatures, build up libraries

• What’s problematic about this approach?
– Blind to novel attacks
– Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions
– Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates
lots of false positives)

Vulnerability Signatures
• Idea: don’t match on known attacks, match on known

problems
• Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239;
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

• That is, match URIs that invoke *.ida?*, have more than
239 bytes of payload

• This example detects any* attempt to exploit a particular
buffer overflow in IIS web servers
– Used by the “Code Red” worm
* (Note, signature is not quite complete)

Vulnerability Signatures
• What’s nice about this approach?

– Conceptually fairly simple
– Takes care of known attacks
– Easy to share signatures, build up libraries
– Can detect variants of known attacks
– Much more concise than per-attack signatures

• What’s problematic?
– Can’t detect novel attacks (new vulnerabilities)
– Signatures can be hard to write / express

• Can’t just observe an attack that works …
• … need to delve into how it works

Benefits of attack signatures

Styles of Detection: Anomaly-Based
• Idea: attacks look peculiar.
• High-level approach: develop a model of normal

behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

• FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
– If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists
• Big benefit: potential detection of a wide range of

attacks, including novel ones

Anomaly Detection
• What’s problematic about this approach?

– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base Rate Fallacy particularly acute: if

prevalence of attacks is low, then you’re more
often going to see benign outliers

• High FP rate
• OR: require such a stringent deviation from “normal”

that most attacks are missed (high FN rate)
Hard to make work well - not widely used today

Specification-Based Detection
• Idea: don’t learn what’s normal; specify what’s

allowed
• FooCorp example: decide that all URL parameters

sent to foocorp.com servers must have at most
one ‘/’ in them
– Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?
– Can detect novel attacks
– Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematic about this approach?
– Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral
• Idea: don’t look for attacks, look for evidence of compromise

• FooCorp example: inspect all output web traffic for any lines

that match a passwd file
• Example for monitoring user shell keystrokes:

 unset HISTFILE (don’t save bash history)

• Example for catching code injection: look at sequences of
system calls, flag any that prior analysis of a given program
shows it can’t generate
– E.g., observe process executing read(), open(), write(), fork(),

exec() …
– … but there’s no code path in the (original) program that calls those

in exactly that order!

Behavioral-Based Detection
• What’s nice about this approach?

– Can detect a wide range of novel attacks
– Can have low false positives

• Depending on degree to which behavior is distinctive
• E.g., for system call profiling: no false positives!

– Can be cheap to implement
• E.g., system call profiling can be mechanized

• What’s problematic about this approach?
– Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
– Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”
• How could they evade system call profiling?

– Mimicry: adapt injected code to comply w/ allowed call sequences

The Problem of Evasion

• For any detection approach, we need to consider
how an adversary might (try to) elude it
– Note: even if the approach is evadable, it can still be

useful to operate in practice
– But: if it’s very easy to evade, that’s especially

worrisome (security by obscurity)

The Problem of Evasion
• Imperfect observability is particularly acute for

network monitoring
• Consider detecting occurrences of the (arbitrary)

string “root” inside a network connection …
– We get a copy of each packet, how hard can it be?

Detecting “root”: Attempt #1

• Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
o Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

 …….….root………..………… 1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro 1

Packet #1

ot………..…………
2

Packet #2 Fix?

Detecting “root”: Attempt #2
• Okay: remember match from end of previous packet

Oops: IP doesn’t guarantee in-order arrival

ot………..…………
2

…….….ro 1 ?

- Now we’re managing state :-(
 Are we done?

…….….ro 1

Packet #1

When 2nd packet arrives, continue working on the match

ot………..…………
Packet #2

2

+

• Fix?

• We need to reassemble the entire TCP bytestream
– Match sequence numbers
– Buffer packets with later data (above a sequence “hole”)

• Issues?
– Potentially requires a lot of state
– Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

• But at least we’re done, right?

Detecting “root”: Attempt #3

Full TCP Reassembly is Not Enough

NIDS

r r
seq=1, TTL=22

n
seq=1, TTL=16

X

o o
seq=2, TTL=22

i
seq=2, TTL=16

X

o o
seq=3, TTL=22

c
seq=3, TTL=16

X

t t
seq=4, TTL=22

e
seq=4, TTL=16

X

Se
nd

er
 /

 A
tt

ac
ke

r
Receiver

r~~~

~~~~ r~~~ ro~~ roo~ root 

~~~~ 
r~~~?

n~~~?

ri~~?

ni~~?

ri~~? ro~~?

ni~~? no~~?
ric~? roc~? rio~? roo~?
nic~? noc~? nio~?
noo~?

rice? roce? rict? roct?
riot? root? rioe? rooe?
nice? noce? nict? noct?
niot? noot? nioe? nooe?

Packet discarded in transit due
to TTL hop count expiring

TTL field in IP header
specifies maximum

forwarding hop count

Assume the Receiver
is 20 hops away

Assume NIDS is 15 hops away

• Fix?
• Idea: NIDS can alert upon seeing a retransmission

inconsistency (two packets for same seqno), as surely it
reflects someone up to no good

• This doesn’t work well in practice: TCP retransmissions
broken in this fashion occur in live traffic
– Fairly rare (23 times in a day of ICSI traffic)
– But real evasions much rarer still (Base Rate Fallacy)
⇒ This is a general problem with alerting on such ambiguities

• Idea: if NIDS sees such a connection, kill it
– Works for this case, since benign instance is already fatally broken
– But for other evasions, such actions have collateral damage

• Idea: rewrite traffic to remove ambiguities
– Works for network- & transport-layer ambiguities
– But must operate in-line and at line speed

Inconsistent TCP Retransmissions

Summary of Evasion Issues

• Evasions arise from uncertainty (or incompleteness)
because detector must infer behavior/processing it can’t
directly observe
– A general problem any time detection separate from potential target

• One general strategy: impose canonical form (“normalize”)
– E.g., rewrite URLs to expand/remove hex escapes
– E.g., enforce blog comments to only have certain HTML tags

• (Another strategy: analyze all possible interpretations rather
than assuming one
– E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …)

• Another strategy: fix the basic observation problem
– E.g., monitor directly at end systems

Inside a Modern HIDS (“AV”)
• URL/Web access blocking:

– Prevent users from going to known bad locations
• Protocol scanning of network traffic (esp. HTTP)

– Detect & block known attacks
– Detect & block known malware communication

• Payload scanning
– Detect & block known malware

• (Auto-update of signatures for these)
• Cloud queries regarding reputation

– Who else has run this executable and with what results?
– What’s known about the remote host / domain / URL?

Inside a Modern HIDS
• Sandbox execution

– Run selected executables in constrained/monitored
environment

– Analyze:
• System calls
• Changes to files / registry
• Self-modifying code (polymorphism/metamorphism)

• File scanning
– Look for malware that installs itself on disk

• Memory scanning
– Look for malware that never appears on disk

• Runtime analysis
– Apply heuristics/signatures to execution behavior

Inside a Modern NIDS
• Deployment inside network as well as at border

– Greater visibility, including tracking of user identity
• Full protocol analysis

– Including extraction of complex embedded objects
– In some systems, 100s of known protocols

• Signature analysis (also behavioral)
– Known attacks, malware communication, blacklisted

hosts/domains
– Known malicious payloads
– Sequences/patterns of activity

• Shadow execution (e.g., Flash, PDF programs)
• Extensive logging (in support of forensics)
• Auto-update of signatures, blacklists

NIDS vs. HIDS
• NIDS benefits:

– Can cover a lot of systems with single deployment
• Much simpler management

– Easy to “bolt on” / no need to touch end systems
– Doesn’t consume production resources on end systems
– Harder for an attacker to subvert / less to trust

• HIDS benefits:
– Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks
• Harder to evade

– Can protect against non-network threats
– Visibility into encrypted activity
– Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets

Summary of Key Concepts for Detection

• Signature-based vs anomaly detection
(blacklisting vs whitelisting)

• Evasion attacks
• Evaluation metrics: False positive rate, false

negative rate
• Base rate problem

	Detecting Attacks
	Quick detour to ARP
	Recall the layers stack
	Link layer
	Link layer
	ARP protocol (Address Resolution Protocol)
	ARP spoofing
	Man-in-the-middle attack on ARP
	How would you do a DoS on ARP?
	How to address ARP spoofing attacks?
	Back to IDS �(intrusion detection system)
	Network Intrusion Detection (NIDS)
	NIDS rules set
	What does a NIDS aim to detect?
	Network Intrusion Detection (NIDS)
	Evasion
	Evasion Attacks (High-Level View)
	Evasion
	Evasion
	Evasion
	Structure of�FooCorp Web Services
	At least two types of IDS
	Network Intrusion Detection
	Structure of�FooCorp Web Services
	Network Intrusion Detection
	Network-Based Detection
	Host-based Intrusion Detection
	Structure of�FooCorp Web Services
	HIDS
	Add system Call Monitoring to HIDS
	Structure of�FooCorp Web Services
	System Call Monitoring (HIDS)
	Log Analysis
	Structure of�FooCorp Web Services
	Log Analysis
	Typical HIDS
	Detection Accuracy
	Perfect Detection
	Detection Tradeoffs
	Base Rate Fallacy
	Styles of Detection: Signature-Based
	Signature-Based Detection
	Vulnerability Signatures
	Vulnerability Signatures
	Styles of Detection: Anomaly-Based
	Anomaly Detection
	Specification-Based Detection
	Styles of Detection: Behavioral
	Behavioral-Based Detection
	The Problem of Evasion
	The Problem of Evasion
	Detecting “root”: Attempt #1
	Detecting “root”: Attempt #2
	Detecting “root”: Attempt #3
	Full TCP Reassembly is Not Enough
	Inconsistent TCP Retransmissions
	Summary of Evasion Issues
	Inside a Modern HIDS (“AV”)
	Inside a Modern HIDS
	Inside a Modern NIDS
	NIDS vs. HIDS
	Summary of Key Concepts for Detection

