
More on DNS and DNSSEC

CS 161: Computer Security
Prof. Raluca Ada Popa

March 6, 2018

A subset of the slides adapted from David Wagner

Domain names
• Domain names are human friendly names to

identify servers or services
– Arranged hierarchically
– www.google.com has:

• .com as TLD (top-level domain)
• google.com as a subdomain of com
• www.google.com a subdomain of google.com

Hierarchy of domain names
empty domain

.com .edu

…

google.com

www.google.com

www.mail.google.com

…

…

Top level domains:

Types of domain names (TLD)

1. Generic TLDs: .com, .edu
2. Country-code TLDs: .au .de .it .us

Creating a domain name

• Domain names are registered and
assigned by domain-name registrars,
accredited by the Internet Corporation
for Assigned Names and Numbers
(ICANN), same group allocating the IP
address space

• Contact the domain-name registrar to
register domain space

Cybersquatting or Domain
Squatting

• Entities buying a domain in advance of
it becoming desirable and later selling to
the agency needing it for much more

2013: Microsoft vs. MikeRoweSoft

The boy accepted an Xbox in exchange for the domain name

Presenter
Presentation Notes
was a legal dispute between Microsoft and a Canadian Belmont High School student named Mike Rowe over the domain name "MikeRoweSoft.com".[2] The case received international press attention following Microsoft's perceived heavy-handed approach to a 12th grade student's part-time web design business and the subsequent support that Rowe received from the online community.[3] A settlement was eventually reached, with Rowe granting ownership of the domain to Microsoft in exchange for an Xbox and additional compensation

DNS Overview
• DNS translates www.google.com to

74.125.25.99: resolves www.google.com

Name servers
• To resolve a domain name, a resolver

queries a distributed hierarchy of DNS
servers also called name servers

• At the top level are the root name servers,
which resolve TLDs such as .com
– Store the authoritative name server for each

TLD (the trusted server for the TLD)
– Government and commercial organizations

run the name servers for TLDs
– Name server for .com managed by Verisign

A DNS Lookup

1. Alice goes to eecs.mit.edu on her browser
2. Her machine contacts a resolver to ask for

eecs.mit.edu’s IP address
– The resolver can be a name server for the corporate network

of Alice’s machine or of her Internet service provider

3. The resolver will try to resolve this domain name and
return an IP address to Alice’s machine

client(requesting host)
xyz.poly.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(for ‘mit.edu’)
dns.mit.edu

7 8

TLD (top-level domain)
server (‘.edu’)

DNS Lookups via a Resolver

9

IP for eecs.mit.edu?

IP for eecs.mit.edu? Don’t know, but ask .edu with IP 192….

IP for eecs.mit.edu?

Don’t know but ask mit.edu at IP 18….

IP is 18.2.1.1

DNS caching

• Almost all DNS servers (resolver and name
servers) cache entries, but with different
cache policies

DNSSEC

• DNSSEC = standardized DNS security
extensions currently being deployed

• Aims to ensure integrity of the DNS
lookup results (to ensure correctness of
returned IP addresses for a domain
name)

Q: what attack is it trying to prevent?
A: attacker changes DNS record result with an incorrect
IP address for a domain

Securing DNS Lookups

• How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

• Idea #1: do DNS lookups over TLS (SSL)

requesting host
xyz.poly.edu www.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

ns.mit.edu

7 8

TLD DNS server
(‘.edu’)

Securing DNS Using SSL/TLS
Host at xyz.poly.edu

wants IP address for
www.mit.edu

Idea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL / TLS

Securing DNS Lookups

• How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

• Idea #1: do DNS lookups over TLS (SSL)
– Performance: DNS is very lightweight. TLS is not.
– Caching: crucial for DNS scaling. But then how do we

keep authentication assurances?
– Security: must trust the resolver.

Object security vs. Channel security
 How do we know which name servers to trust?

• Idea #2: make DNS results like certs
– I.e., a verifiable signature that guarantees who

generated a piece of data; signing happens off-line

Scratchpad – let’s design it together

NS of google.com:
business.google.com IP1
finance.google.com IP2
mail.google.com IP3

local DNS server
(resolver)

what is IP of
mail.google.com?

Q: How can we ensure returned result is correct?
A: Have google.com NS sign IP3
Q: What should the signature contain?
A: At least the domain name, IP address, cache time
Q: How do we know google.com’s PK?
A: The .com NS can give us a certificate on it

IP3

Presenter
Presentation Notes
HAVE THEM TALK TO PARTNERS ABOUT IDEAS, problems that might arise, solutions and then I will ask a set of questions to test out the solutions

Scratchpad – let’s design it together

NS of google.com:
business.google.com IP1
finance.google.com IP2
mail.google.com IP3

local DNS server
(resolver) what is IP of

mail.google.com?

Q: How do we know .com’s PK?
A: Chain of certificates, like for the web, rooted in the PK of
the root name server
Q: How do we know the PK of the root NS?
A: Hardcoded in the resolvers
Q: How does the resolver verify a chain of certificates?

IP3

Scratchpad – let’s design it together

NS of google.com:
business.google.com IP1
finance.google.com IP2
mail.google.com IP3

local DNS server
(resolver) what is IP of

goose.google.com?

Q: How can we ensure returned result is correct?
A: Have google.com NS sign the “no record” response
sign(“goose.google.com” does not exist)
But it is expensive to sign online.
Q: What problem can this cause?
A: DoS due to an amplification of effort between query and
response.

It does not exist

Scratchpad – let’s design it together

NS of google.com:
business.google.com IP1
finance.google.com IP2
mail.google.com IP3

local DNS server
(resolver)

what is IP of
goose.google.com?

Q: How can we sign the no-record response offline?
A: We don’t know which are all the domains we might be asked
for, but we can sign consequent domains which indicates
absence of a name in the middle, so its cacheable
sign([“ga.google.com”, “mail.google.com”])
But it is expensive to sign online.
Q: What problem can this cause?
A: Enumeration attack. An attacker can issue queries for
things that do not exist and obtains intervals of all the things
that exist until it mapped the whole space.

It does not exist

DNSSEC

Now let’s go through it slowly…

DNSSEC

• Key idea:
– Sign all DNS records. Signatures let you verify

answer to DNS query, without having to trust
the network or resolvers involved.

• Remaining challenges:
– DNS records change over time
– Distributed database: No single central source

of truth

 Operation of DNSSEC
• As a resolver works its way from DNS root down

to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

• This builds up a chain of trusted keys
• Resolver has root’s key wired into it

• The final answer that the resolver receives is
signed by that level’s key

• Resolver can trust it’s the right key because of chain of
support from higher levels

• All keys as well as signed results are cacheable

www.google.com A?
Client’s

Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s

Resolver k.root-servers.net

Ordinary DNS:

We start off by sending the query to one of the root name
servers. These range from a.root-servers.net
through m.root-servers.net. Here we just picked one.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The reply didn’t include an answer for www.google.com.
That means that k.root-servers.net is instead telling
us where to ask next, namely one of the name servers for
.com specified in an NS record.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This Resource Record (RR) tells us that one of the name
servers for .com is the host a.gtld-servers.net.
(GTLD = Global Top Level Domain.)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This RR tells us that an Internet address (“A” record)
for a.gtld-servers.net is 192.5.6.30. That
allows us to know where to send our next query.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The actual response includes a bunch of
NS and A records for additional .com name
servers, which we omit here for simplicity.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s

Resolver a.gtld-servers.net

We send the same query to one of the .com
name servers we’ve been told about

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

That server again doesn’t have a direct
answer for us, but tells us about a
google.com name server we can try

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

Trying one of the google.com name servers then gets us
an answer to our query, and we’re good-to-go …
… though with no confidence that an attacker hasn’t led
us astray with a bogus reply somewhere along the way :-(

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Up through here is the same as before …

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR (“Delegation Signer”) lists .com’s public key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR specifies a signature (RRSIG) over
another RR … in this case, the signature covers
the above DS record, and is made using the root’s
private key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

www.google.com A?
Client’s

Resolver a.gtld-servers.net

DNSSEC (with simplifications):

The resolver again proceeds to trying one of
the name servers it’s learned about.

Nothing guarantees this is a legitimate name
server for the query!

Presenter
Presentation Notes
Ask them why, so they think of it

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

Back comes similar information as before: google.com’s public
key, signed by .com’s key (which the resolver trusts because
the root signed information about it)

www.google.com A?
Client’s

Resolver ns1.google.com

DNSSEC (with simplifications):

The resolver contacts one of the google.com
name servers it’s learned about.

Again, nothing guarantees this is a legitimate
name server for the query!

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Finally we’ve received the information we
wanted (A records for www.google.com)! …
and we receive a signature over those records

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Assuming the signature validates, then because we believe
(due to the signature chain) it’s indeed from google.com’s
key, we can trust that this is a correct set of A records …
Regardless of what name server returned them to us!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s

Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s

Resolver ns1.evil.com

DNSSEC – Mallory attacks!

Resolver observes that the reply didn’t
include a signature, rejects it as insecure

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(1) If resolver didn’t receive a signature
from .com for evil.com’s key, then it
can’t validate this signature & ignores
reply since it’s not properly signed …

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(2) If resolver did receive a signature from .com
for evil.com’s key, then it knows the key is for
evil.com and not google.com … and ignores it

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

If signature actually comes from google.com’s key,
resolver will believe it …
… but no such signature should exist unless either:
(1) google.com intended to sign the RR, or
(2) google.com’s private key was compromised

Issues With DNSSEC, cont.
• Issue #1: Partial deployment

– Suppose .com not signing, though google.com is. Or,
suppose .com and google.com are signing, but
cnn.com isn’t. Major practical concern. What do we do?

– What do you do with unsigned/unvalidated results?
– If you trust them, weakens incentive to upgrade

(man-in-the-middle attacker can defeat security even for
google.com, by sending forged but unsigned response)

– If you don’t trust them, a whole lot of things break

Issues With DNSSEC, cont.
• Issue #2: Negative results (“no such name”)

– What statement does the nameserver sign?
– If “gabluph.google.com” doesn’t exist, then have to do

dynamic key-signing (expensive) for any bogus request
– Instead, sign (off-line) statements about order of names

• E.g., sign “gabby.google.com is followed by gabrunk.google.com”
• Thus, can see that gabluph.google.com can’t exist

– But: now attacker can enumerate all names that exist :-(

Issues with DNSSEC

• Issue #3: Replies are Big
– E.g., “dig +dnssec berkeley.edu” can return

2100+ B
– DoS amplification
– Increased latency on low-capacity links
– Headaches w/ older libraries that assume replies <

512B

Adoption of DNSSEC

• Adopted, but not nearly as much as TLS
• Difficulties with deploying DNSSEC:

– The need to design a backward-compatible standard that
can scale to the size of the Internet

– Zone enumeration attack
– Deployment of DNSSEC implementations across a wide

variety of DNS servers and resolvers (clients)
– Disagreement among implementers over who should own

the top level domain keys
– Overcoming the perceived complexity of DNSSEC and

DNSSEC deployment

Presenter
Presentation Notes
Credit: wikipedia for this list

Summary of TLS & DNSSEC Technologies

• TLS: provides channel security (for communication over TCP)
– Confidentiality, integrity, authentication
– Client & server agree on crypto, session keys
– Underlying security dependent on:

• Trust in Certificate Authorities / decisions to sign keys
• (as well as implementors)

• DNSSEC: provides object security (for DNS results)
– Just integrity & authentication, not confidentiality
– No client/server setup “dialog”
– Tailored to be caching-friendly
– Underlying security dependent on trust in Root Name Server’s

key, and all other signing keys

Takeaways
• Channel security vs object security
• PKI organization should follow existing line of

authority

	More on DNS and DNSSEC
	Domain names
	Hierarchy of domain names
	Types of domain names (TLD)
	Creating a domain name
	Cybersquatting or Domain Squatting
	2013: Microsoft vs. MikeRoweSoft
	DNS Overview
	Name servers
	A DNS Lookup
	DNS Lookups via a Resolver
	DNS caching
	DNSSEC
	Securing DNS Lookups
	Securing DNS Using SSL/TLS
	Securing DNS Lookups
	Scratchpad – let’s design it together
	Scratchpad – let’s design it together
	Scratchpad – let’s design it together
	Scratchpad – let’s design it together
	DNSSEC
	DNSSEC
	 Operation of DNSSEC
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 41
	Slide Number 42
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Issues With DNSSEC, cont.
	Issues With DNSSEC, cont.
	Issues with DNSSEC
	Adoption of DNSSEC
	Summary of TLS & DNSSEC Technologies
	Takeaways

