
Firewalls/Detection

CS 161: Computer Security
Prof. Raluca Ada Popa

March 8, 2018



Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against 
external attack?
– Key Observation:

• The more network services your machines run, the greater the risk
– Due to larger attack surface

• One approach: on each system, turn off unnecessary 
network services
– But you have to know all the services that are running
– And sometimes some trusted remote users still require access



Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against 
external attack?
– Key Observation:

• The more network services your machines run, the greater the risk
– Due to larger attack surface

• One approach: on each system, turn off unnecessary 
network services
– But you have to know all the services that are running
– And sometimes some trusted remote users still require access

• Plus key question of scaling
– What happens when you have to secure 100s/1000s of systems?
– Which may have different OSs, hardware & users …
– Which may in fact not all even be identified …



Taming Management Complexity
• Possibly more scalable defense: Reduce risk by 

blocking in the network outsiders from having 
unwanted access your network services
– Interpose a firewall into the traffic to/from the outside must 

traverse
– Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

Internet Internal
Network



Selecting a Security Policy
• Firewall enforces an (access control) policy:

– Who is allowed to talk to whom, accessing what service?

• Distinguish between inbound & outbound connections
– Inbound: attempts by external users to connect to services on 

internal machines
– Outbound: internal users to external services
– Why?  Because fits with a common threat model.  There are 

thousands of internal users (and we’ve vetted them).  There are 
billions of outsiders.

• Conceptually simple access control policy:
– Permit inside users to connect to any service
– External users restricted: 

• Permit connections to services meant to be externally visible
• Deny connections to services not meant for external access



How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external 
access to services
– Shut them off as problems recognized



How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external 
access to services
– Shut them off as problems recognized

• Default Deny: start off permitting just a few 
known, well-secured services
– Add more when users as they complain (and 

mgt. approves)

Pros and cons?



How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external 
access to services
– Shut them off as problems recognized

• Default Deny: start off permitting just a few 
known, well-secured services
– Add more when users complain (and mgt. 

approves)
• Pros & Cons?

– Flexibility vs. conservative design
– Flaws in Default Deny get noticed more quickly / less 

painfully

In general, use Default Deny





Types of firewalls

1. Packet filters (stateless)
2. Stateful packet filter
3. Application-level firewall



Packet filter
• A packet filter is a firewall that inspects each packet for 

certain filtering rules to determine whether to pass or block 
it

• Filtering rules are based on the network and transport 
layer:  source IP address, destination IP address, Layer 4 
(that is, TCP/UDP) source port, and Layer 4 destination 
port

• Pro: very fast, can be implemented in routers
• Con:

– They have no logging facility that can be used to detect 
when a break-in has occurred 

–  Ports can be spoofed



Stateful Packet Filter
• Stateful packet filter keeps track of all connections 

(inbound/outbound)
– Each rule specifies which connections are allowed/denied

(access control policy)
– A packet is forwarded if it is part of an allowed connection

Internet Internal
Network



Example Rule

allow tcp connection 4.5.5.4:* -> 3.1.1.2:80

• Firewall should permit TCP connection that’s:
– Initiated by host with Internet address 4.5.5.4 and
– Connecting to port 80 of host with IP address 3.1.1.2

• Firewall should permit any packet associated with
this connection

• Thus, firewall keeps a table of (allowed) active 
connections.  When firewall sees a packet, it checks 
whether it is part of one of those active connections.
If yes, forward it; if no, drop it.



Example Rule

allow tcp connection *:*/int -> 3.1.1.2:80/ext

• Firewall should permit TCP connection that’s:
– Initiated by host with any internal host and
– Connecting to port 80 of host with IP address 3.1.1.2 on 

external Internet
• Firewall should permit any packet associated with

this connection

• The /int indicates the network interface.



Example Ruleset

allow tcp connection *:*/int -> *:*/ext
allow tcp connection *:*/ext -> 1.2.2.3:80/int

• Firewall should permit outbound TCP connections
(i.e., those that are initiated by internal hosts)

• Firewall should permit inbound TCP connection to our 
public webserver at IP address 1.2.2.3



Stateful Filtering
Discussion question:

Suppose you want to allow inbound connection to a 
FTP server (FTP= file transfer protocol), but block any 
attempts to login as “root”.  How would you build a 
stateful packet filter to do that? In particular, what state 
would it keep, for each connection?
- assume traffic is unencrypted 

Discuss with a partner.



State Kept
• No state – just drop any packet with root in 

them
• State ideas:

– Is it a FTP connection?
– Where in FTP state (e.g. command, what 

command)
– Src ip addr, dst ip addr, src port, dst port
– Inbound/outbound connection
– Keep piece of login command until it’s completed 

– only first 5 bytes of username



Beware!
• Sender might be malicious and trying to sneak 

through firewall
• “root” might span packet boundaries

…….….ro1

Packet #1

ot………..…………2

Packet #2



Beware!
• Packets might be re-ordered

ot………..…………2 …….….ro1



How to address this?

• TCP reconstruction: the stateful packet 
filter will reconstruct the sequence of 
packets by putting them in order based 
on their sequence numbers and 
examining the payload as it spans 
packet boundaries

Can an attacker sending the string “root” to 
the destination still evade being caught?



Firewall

r rseq=1, TTL=22

n seq=1, TTL=16 X

o oseq=2, TTL=22
i seq=2, TTL=16 X

o oseq=3, TTL=22
c seq=3, TTL=16 X

t tseq=4, TTL=22

e seq=4, TTL=16 X

Se
nd

er
 / 

At
ta

ck
er

Receiver

r~~~

~~~~r~~~ro~~roo~root

~~~~
r~~~?
n~~~?
ri~~?
ni~~?

ri~~? ro~~?
ni~~? no~~?

ric~? roc~? rio~? roo~? 
nic~? noc~? nio~? noo~?

rice? roce? rict? roct? riot? 
root? rioe? rooe? nice? 
noce? nict? noct? niot? 
noot? nioe? nooe? 

Packet discarded in transit due 
to TTL hop count expiring

TTL field in IP header 
specifies maximum 

forwarding hop count
Assume the Receiver 

is 20 hops away

Assume firewall is 15 hops away

Beware!



Application-level firewall
• Firewall acts as a proxy server that provides
access control at the application layer.
• TCP connection from client to firewall, which 

then makes a second TCP connection from 
firewall to server.

• Pro: can  examine traffic in detail (including 
payload=content of packet), so a more secure  
type of firewall, and it can log.

• Con: processing intensive and can become a 
bottleneck under heavy traffic conditions.



Why Have Firewalls Been 
Successful?

• Central control – easy administration and update
– Single point of control: update one config to change 

security policies
– Potentially allows rapid response

• Easy to deploy – transparent to end users
– Easy incremental/total deployment to protect 1000’s

• Addresses an important problem
– Security vulnerabilities in network services are rampant
– Easier to use firewall than to directly secure code …



Attacks to Firewalls Don’t Stop?
Discussion question:

Suppose you wanted to attack a company protected by 
a firewall.  What attacks might you try?

Discuss with a partner.



Firewall Disadvantages
• Functionality loss – less connectivity, less risk

– May reduce network’s usefulness
– Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls

• The malicious insider problem
– Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can 
wreak havoc

• Firewalls establish a security perimeter
– Like Eskimo Pies: “hard crunchy exterior, soft creamy 

center”
– Threat from travelers with laptops, …



Takeaways on Firewalls
• Firewalls: Reference monitors and access 

control all over again, but at the network level
• Attack surface reduction
• Centralized control



Secure External Access to Inside Machines

• Often need to provide secure remote access to a 
network protected by a firewall
– Remote access, telecommuting, branch offices, …

• Alice wants to access work network from home, e.g., 
contact file server, over the public Internet. Firewall 
does not allow outside access. 

• How can we give Alice access since she works for the 
company?

Internet

Company intranet

Alice at 
home

Fileserver

Alice at 
work



Secure External Access to Inside Machines

• Create secure channel (Virtual Private Network, or VPN) 
to tunnel traffic from outside host/network to inside 
network

Internet CompanyAlice at 
home

VPN server

Fileserver

Alice at 
work

Company intranet



VPN

• An intermediary to which an outside 
user authenticates and forwards 
packets to the destination

• Firewall can be configured to allow 
traffic going to the VPN server

• If Alice can authenticate to VPN, the 
VPN will make internal requests for her

• VPN can forward packets both inside 
and outside



Tunneling
• The VPN client running on Alice’s machine will create 

a tunnel with the VPN 
• Tunneling is a mechanism for encapsulating one 

protocol in another protocol. 

IP header to 
fileserver

IP payload to 
file server

VPN client encapsulates packet

IP header to 
fileserver

IP payload to 
file server

IP header to 
VPN

encrypted



VPN
• Provides Authentication, Confidentiality, Integrity 

via encryption and digital signatures/MAC

• Try it yourself at http://www.net.berkeley.edu/vpn/



A familiar example

• You want to download paper from IEEE 
society’s website. Can access it from 
Berkeley’s campus because campus 
pays dues to IEEE

• Cannot access from outside
• Connect to Berkeley VPN from outside 

and you can access it



Detecting Attacks



Network Intrusion Detection (NIDS)
• Passively monitor network traffic for signs 

of attack
– Look for /etc/passwd

Internet Internal
Network

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png


Network Intrusion Detection (NIDS)
• NIDS has a table of all active connections,

and maintains state for each
– e.g., has it seen a partial match of /etc/passwd?

• What do you do when you see a new packet 
not associated with any known connection?
– Create a new connection: when NIDS starts it 

doesn’t know what connections might be existing



Evasion
• What should NIDS do if it sees a RST 

packet?

(a)Assume RST will be received
(b)Assume RST won’t be received
(c)Other (please specify)

NIDS

/etc/p

RST

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png


Evasion
• What should NIDS do if it sees this?

(a)Alert – it’s an attack
(b)No alert – it’s all good
(c)Other (please specify)

NIDS

/%65%74%63/%70%61%73%73%77%64

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png


Evasion
• Evasion attacks arise when you have 

“double parsing” 

• Inconsistency – interpreted differently

• Ambiguity – information needed to interpret 
is missing



Evasion Attacks (High-Level View)

• Some evasions reflect incomplete analysis
– In our example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation care 

(make sure we fully understand the spec)

• Some are due to imperfect observability
– For instance, if what NIDS sees doesn’t exactly match 

what arrives at the destination 



Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK
    Output of bin/amazeme

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png


Network Intrusion Detection
• Approach #1: look at the network traffic

– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”



Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

8. 200 OK
    Output of bin/amazeme

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png
http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png


Network Intrusion Detection
• Approach #1: look at the network traffic

– (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

• Pros:
– No need to touch or trust end systems

• Can “bolt on” security
– Cheap: cover many systems w/ single monitor
– Cheap: centralized management



Network-Based Detection
• Issues:

– Scan for “/etc/passwd”?
• What about other sensitive files?

– Scan for “../../”?
• Sometimes seen in legit. requests (= false positive)
• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

– Okay, need to do full HTTP parsing
• What about “..///.///..////”?

– Okay, need to understand Unix filename semantics too!
• Overall problem: don’t understand applications

– What if it’s HTTPS and not HTTP?
• Need access to decrypted text / session key – yuck!



Host-based Intrusion Detection
• Approach #2: instrument the web server

– Host-based IDS  (sometimes called “HIDS”)
– Scan arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”



Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server
4. amazeme.exe?

profile=xxx

bin/amazeme -p xxx

HIDS instrumentation 
added inside here

6.  Output of bin/amazeme sent back

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png


Host-based Intrusion Detection
• Approach #2: instrument the web server

– Host-based IDS  (sometimes called “HIDS”)
– Scan arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

• Pros:
– No problems with HTTP complexities like %-escapes
– Works for encrypted HTTPS!

• Issues:
– Have to add code to each (possibly different) web server

• And that effort only helps with detecting web server attacks
– Still have to consider Unix filename semantics (“..////.//”)
– Still have to consider other sensitive files



Log Analysis
• Approach #3: each night, script runs to analyze log 

files generated by web servers
– Again scan arguments sent to back-end programs



Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

Nightly job runs on this 
system, analyzing logs

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png


Log Analysis
• Approach #3: each night, script runs to analyze log files 

generated by web servers
– Again scan arguments sent to back-end programs

• Pros:
– Cheap: web servers generally already have such logging facilities 

built into them 
– No problems like %-escapes, encrypted HTTPS

• Issues:
– Again must consider filename tricks, other sensitive files
– Can’t block attacks & prevent from happening
– Detection delayed, so attack damage may compound
– If the attack is a compromise, then malware might be able to alter 

the logs before they’re analyzed
• (Not a problem for directory traversal information leak example)



System Call Monitoring (HIDS)
• Approach #4: monitor system call activity of 

backend processes
– Look for access to /etc/passwd



Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of 
system calls accessing files

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png


System Call Monitoring (HIDS)
• Approach #4: monitor system call activity of 

backend processes
– Look for access to /etc/passwd

• Pros:
– No issues with any HTTP complexities
– May avoid issues with filename tricks
– Attack only leads to an “alert” if attack succeeded

• Sensitive file was indeed accessed

• Issues:
– Maybe other processes make legit accesses to the 

sensitive files (false positives)
– Maybe we’d like to detect attempts even if they fail?

• “situational awareness”



Detection Accuracy
• Two types of detector errors:

– False positive (FP): alerting about a problem when in fact 
there was no problem

– False negative (FN): failing to alert about a problem 
when in fact there was a problem

• Detector accuracy is often assessed in terms of 
rates at which these occur:
– Define  to be the event of an instance of intrusive 

behavior occurring (something we want to detect) 
– Define  to be the event of detector generating alarm

• Define:
– False positive rate = P[|¬]
– False negative rate = P[¬| ]



Perfect Detection
• Is it possible to build a detector for our example 

with a false negative rate of 0%?
• Algorithm to detect bad URLs with 0% FN rate:

void my_detector_that_never_misses(char *URL)
{
    printf("yep, it's an attack!\n");
}

– In fact, it works for detecting any bad activity with no 
false negatives!  Woo-hoo!

• Wow, so what about a detector for bad URLs that 
has NO FALSE POSITIVES?!
– printf("nope, not an attack\n");



Detection Tradeoffs
• The art of a good detector is achieving an 

effective balance between FPs and FNs
• Suppose our detector has an FP rate of 

0.1% and an FN rate of 2%.  Is it good 
enough?  Which is better, a very low FP rate 
or a very low FN rate?
– Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and 
consuming hour of their time; FN might lead to $10K 
cleaning up compromised system that was missed

– … but also critically depends on the rate at 
which actual attacks occur in your environment



Base Rate Fallacy
• Suppose our detector has a FP rate of 0.1% (!)

and a FN rate of 2% (not bad!)
• Scenario #1: our server receives 1,000 URLs/day, 

and 5 of them are attacks
– Expected # FPs each day = 0.1% * 995 ≈ 1
– Expected # FNs each day = 2% * 5 = 0.1    (< 1/week)
– Pretty good!

• Scenario #2: our server receives 10,000,000 
URLs/day, and 5 of them are attacks
– Expected # FPs each day ≈ 10,000 :-(

• Nothing changed about the detector; only our 
environment changed
– Accurate detection very challenging when base rate of activity 

we want to detect is quite low



Conclusion

• NIDS attempt to detect network attacks 
by monitoring traffic or application 
behavior

• Different types of NIDS have different 
pros/cons and false positive/false 
negatives tradeoffs


