
CS 161: Cats and Penguins
Midterm 2 Review
4/3/18
Kevyn, Karthik

Slides made by Kevyn, Karthik, Sam, Chris, and Paul with material “borrowed” from Dave
Wagner, Nick Weaver, Raluca Ada Popa, and Scott Shenker.

Topics

● RSA signatures (Karthik)
● Networking (Kevyn)
● TLS (Karthik)
● Web (Rip, no time)
● Good luck?

Our format: Topic review, then questions

Disclaimer

This review is meant to help spot check your understanding of the course
material and hopefully direct your attention to things you have overlooked in
your studying.

This product has not been evaluated by the FDA and is not approved to
diagnose, treat, cure, or prevent disease.

There could be stuff on the exam that is not covered in the review, and stuff in
the review is not necessarily in the exam.

Tux and Broccoli

RSA Signatures

● The RSA signature is MAC’s asymmetric counterpart
○ Messages are signed with a private key and verified with a public key

● Generating Signature
○ 2 large primes, p and q, are chosen and their product, n, is computed. n is the public key
○ From p and q, a private key, d, is derived
○ The message, M, is hashed to produce H(M)
○ The signature, S, is produced as follows: S = H(M)d mod n

● Verifying Signature
○ Received message is decrypted (if encrypted) and hashed to produce H(M)
○ If H(M) == S3 mod n, signature is correct

● For a more mathematically rigorous treatment of RSA signatures, refer to
https://inst.eecs.berkeley.edu/~cs161/fa17/notes/Signatures.2.28.pdf

RSA Signatures

● RSA signatures ensure the following:
○ Even if a malicious party is allowed to choose messages to be signed, they are unable to

guess what the signature would be on a never before seen message

● RSA signatures provide integrity
○ Verifiable signatures are impossible to produce without the private key. As a result, attackers

cannot tamper with message and produce new, valid signature.

● RSA signatures provide authentication
○ Only the owner of the private key can produce verifiable signatures.

● RSA signatures provide non-repudiation
○ Proof is easy to provide to a third party, since anyone can verify a signature with the signer’s

public key

RSA Signatures

● What if we skipped the hashing step?
○ S = Md mod n
○ If M == S3 mod n, signature is correct

RSA Signatures

● What if we skipped the hashing step?
○ S = Md mod n
○ If M == S3 mod n, signature is correct

● You can forge signatures
○ Pick a random S, compute M = S3 mod n, S is now a valid signature of M!

● Attacker has no control over M
○ By making M a cryptographic hash, attackers cannot find messages that hash to M

Password Hashing

● Problem: If a website leaks their password database, then their user
accounts are compromised
○ Attackers can use the leaked passwords to login as other users

● Idea: store data that can be used to verify a password, but cannot (easily)
be used to compute a valid password

Password Hashing

Joe runs a large website that allows users to log in and share images. When a new user sets up their
account, the website hashes their password with SHA256 and stores the hash in a database.

When a user logs in, the website hashes the supplied password with SHA256 and compares it to the
stored hash. Joe figures that with this scheme, if anyone hacks into your database they will only see
hashes and won’t learn your users’ passwords.

Out of curiosity, Joe does a Google search on several hashes in the database and is alarmed to find
that, for a few of them, the Google search results reveal the corresponding password. He comes to you
for help.

Password Hashing Questions

1. What mistake did Joe make in how he stored passwords?
2. What is the consequence of this mistake? In other words, what is the risk

that it introduces and how many of Joe’s users could be affected? Does it
affect only users whose password hashes are available in Google search,
or does it go beyond that?

3. How should Joe store passwords? More specifically, if a user’s password
is w, what should Joe store in the database record for that user?

Password Hashing Questions

1. What mistake did Joe make in how he stored passwords?

He didn’t use a salt.
(His other mistake was to use a hash that is too fast, though that doesn’t really
explain why the hash turned up in a Google search, so this didn’t receive full
credit.)

Password Hashing Questions

2. What is the consequence of this mistake? In other words, what is the risk
that it introduces and how many of Joe’s users could be affected? Does it
affect only users whose password hashes are available in Google search,
or does it go beyond that?

If the database is leaked (e.g., server compromise), the attacker can mount
offline password guessing attacks. Such an attacker might be able to recover
many of the users’ passwords—not just those whose password hashes are
listed in Google search.

Password Hashing Questions

3. How should Joe store passwords? More specifically, if a user’s password
is w, what should Joe store in the database record for that user?

s,F(w,s) where s is a random salt chosen independently for each user and
where F is a slow cryptographic hash, e.g., SHA256 iterated many times (F(x) =
H(H(···(x)···)) where H is SHA256).

Password Hashing Summary

● Hash passwords to help protect their confidentiality
● Use salts to prevent attackers from memorizing common password

hashes
● Make the salts unique per user to prevent attackers from cracking multiple

passwords at once
● Use a slow cryptographic hash function to make it harder for attackers to

brute force a password (many iterations of a slow hash function works)
● Passwords can still be brute-forced/guessed after all these defenses!

Just kidding, we can’t fit everything, and we don’t have 50 minutes to spend on
this.

Ethernet (the
protocol)

802.11(Wifi)

ARP

DHCP

TCP

UDP

IP

TLS

It might be nice to
write this down and
forget about it.

Also good to write
down: TCP and
UDP headers.

Available for
purchase
separately.

Important
Things to
remember:
7. TLS, DNS

4. TCP, UDP

3. IP

2. ARP

1. Bits on a
“wire”(less)

ARP: Address
Resolution Protocol

Basically, you need
to know the MAC
address for L2.

So you yell: Hey
who has this IP
address?

And hope the
device responds.

Does anything
seem dangerous
here?

Do y’all know what subnets are?
Example:
Are 192.168.1.5 and 192.168.0.6 on the same subnet?
Subnet mask: 192.168.0.0 Yes
Subnet mask: 192.168.1.0 No

TCP Issues
● TCP is not inherently secure
● A malicious entity who knows the sequence numbers, port numbers, and IP

addresses can spoof a connection
○ This means on-path attackers can easily inject data
○ If an off-path attacker can guess this information, they can also inject data
○ An attacker can also inject RST packets. If the connection information is correct, the receiving

party will terminate the connection immediately.
○ An attacker can even create an entirely fake connection if they can see data being transmitted

(on-path) or guess the connection information

Attacker Definitions (for the purposes of this class)
Man in the middle: Attacker can see and modify traffic (this includes dropping
packets).

On path: Attacker can see but not modify traffic (Different definition than Dave
Wagner’s semesters).

Off path: Attacker can’t see ****.

Remember all attackers can spoof whatever packets they want!

Think about what fields an attacker would need to guess correctly. (Hint, answer
varies depending on the situation) [See also: Kaminksy attack]

HIDS: Host based Intrusion Detection System

Benefits: Can read reconstructed data.

Drawbacks: Have to add to every host.

NIDS: Network based Intrusion Detection System

Benefits: Easy to add to a network (cheap and easy), don’t need to touch end
systems.

Drawbacks: Can be evaded as an L3 device. (example, can’t decrypt https traffic)

Intrusion Detection

Things to Review
DNS

Firewalls

Well I have questions, HAH

Spring 2017 - MT2

Spring 2017 - MT2

(l) A useful property of fiber optic cables is that the technology fundamentally eliminates the possibility of
eavesdropping.

(m) It’s difficult for an off-path attacker sending IP packets with a spoofed source to view the responses to
those packets.

(n) In the event where the domain name to IP address binding changes, the DNS server responsible for the
given domain name sends invalidation messages to clients in order to flush their mappings.

(o) Randomizing the DNS query identifier prevents an on-path attacker from spoofing DNS responses.

Suppose an attacker launches a RST injection attack against Alice. Are there
situations in which Alice can detect that the attack has occurred? If YES, explain
how she might do so. If NO, explain why it’s not possible for her to do so.

Solution: The answer we had intended was: YES. When the attacker injects their
spoofed traffic, they cannot prevent any traffic sent by Alice’s legitimate peer (Bob)
that’s already in flight from also arriving. Thus, Alice can observe both the receipt
of a RST purportedly from Bob (the attack), as well as additional traffic (with later
sequence numbers) arriving from Bob. Such a pattern does not make sense for
the benign situation that Bob’s own system sent the RST.

If a laptop joining a WIFI network uses both DHCP and DNS, it will first use DHCP
before using DNS.

When establishing a TCP connection, the client and the server engage in a three
way handshake to determine the shared ISN they will both use for that connection.

Hosts that use DHCP on a wired networking technology such as Ethernet are
protected against possible DHCP spoofing attacks.

Source port randomization helps defend against an off-path attacker performing
the Kaminsky DNS cache poisoning attack.

“Bailiwick” checks in modern DNS resolvers will prevent a malicious name server
responsible for foo.com from using the Additional fields in its DNS responses to
poison cache entries for bar.com.

If a laptop joining a WIFI network uses both DHCP and DNS, it will first use DHCP
before using DNS. (True)

When establishing a TCP connection, the client and the server engage in a three
way handshake to determine the shared ISN they will both use for that connection.
(False, both select their own ISN)

Hosts that use DHCP on a wired networking technology such as Ethernet are
protected against possible DHCP spoofing attacks. (False, DHCP is broadcast.)

Source port randomization helps defend against an off-path attacker performing
the Kaminsky DNS cache poisoning attack (True).

“Bailiwick” checks in modern DNS resolvers will prevent a malicious name server
responsible for foo.com from using the Additional fields in its DNS responses to
poison cache entries for bar.com (True).

Professor Raluca gets home after a tiring day writing papers and singing karaoke :). She opens up her
laptop and would like to submit them to a conference. From a networking and web perspective, what are
the steps involved in submitting her paper?

Raluca's computer needs to connect to the wifi. What messages are exchanged in the 4 part handshake
in order to achieve this?

Raluca's computer sends: ___________. This message is broadcasted/unicasted (Choose one and
explain):

A DHCP server replies with a DHCP Offer. What does this message contain? What can a malicious
attacker do at this step? Keep in mind that an attacker on the same subnet can hear the discovery
message.

Raluca's computer sends: _____________. This message is broadcasted/unicasted (Choose one and
explain)

The server then responds with: ____________.

Raluca would like to print out her paper. Her printer is on a different local network with the IP address
192.168.1.5 and the MAC address: 1E:AT:DE:AD:BE:EF.

Raluca's computer is configured as follows:
IP Address: 192.168.0.2
DNS Server: 8.8.8.8
Subnet mask: 255.255.255.0
Default Gateway: 192.168.0.1
MAC Address: F8:DB:88:F8:4C:27

What address does Raluca's computer make an ARP request for? ____________

The response she gets back is: 16:1D:EA:DB:EE:F1.
Fill out the information for Raluca's packet below:

Raluca's Packet
Source IP address:
Destination IP:
Source MAC Address:
Destination MAC Address:

The router (router A) routes this packet to the router (router B) of the printer using the destination IP
address. The MAC address for router B is C0:FF:EE:C0:FF:EE.
What address does the router B make an ARP request for? ___________

Oh no! Raluca has a smart refrigerator that has been taken over by an attacker \frownie{}. Assume her
refrigerator is on her local network. How can the attacker intercept Raluca's paper before it gets to the
printer?

Your answer here!

SSL/TLS
● Secure end to end secure communications channel (CIA)

○ Secure no matter what other agents in between do
● Browser must know the public key of the server

○ Certification used to distribute/verify public keys

Certification / Certificate Chain

Source:
https://search.thawte.com/support/ssl-digital-certificates/index?
page=content&actp=CROSSLINK&id=SO16297

https://search.thawte.com/support/ssl-digital-certificates/index?page=content&actp=CROSSLINK&id=SO16297
https://search.thawte.com/support/ssl-digital-certificates/index?page=content&actp=CROSSLINK&id=SO16297

HTTPS Connection (SSL / TLS)
• Browser (client) connects via TCP to

Amazon’s HTTPS server

• Client picks 256-bit random number
RB, sends over list of crypto protocols it
supports

• Server picks 256-bit random number
RS, selects protocols to use for this
session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

Browser Amazon
Server

Hello. My rnd # = R
B . I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. L
et’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of

data

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public
RSA key KAmazon

• Using PS, RB, and RS, browser & server derive
symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs computed over
entire dialog so far

• If good MAC, Browser displays

• All subsequent communication encrypted w/
symmetric cipher (e.g., AES128) cipher keys in
some chaining mode, MACs
– Sequence #’s thwart replay attacks

Exchange with RSA
Browser

Here’s my cert

~2-3 KB
 of dat

a

{PS}PKAmazo
n

PS

PS

{M
1, MAC(M

1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Q: Forward secrecy?
A: No forward secrecy because attacker can
decrypt PS and knows RB, and RS and
computes secrets

Exchange via Diffie-Hellman
• For Diffie-Hellman, server generates random a,

sends public params and ga mod p
– Signed with server’s private key

• Browser verifies signature using PK from
certificate

• Browser generates random b, computes PS =
gab mod p, sends to server

• Server also computes
PS = gab mod p

• Remainder is as before: from PS, RB, and RS,
browser & server derive symm. cipher keys (CB,
CS) and MAC integrity keys (IB, IS), etc…

Browser
Here’s my cert

~2-3 KB
 of dat

a

gb mod p
PS

PS

{M
1, MAC(M

1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} SKAmazon
…

Amazon
Server

Q: Forward secrecy?
A: Has forward secrecy because shared
secret never sent over the network! If
attacker as SKAmazon, cannot decrypt a.

Spring 2017 - Final

Spring 2017 - Final

● TLS protects the channel, not the hosts. A buffer overflow vulnerability in the
network stack could allow a malicious party to modify or exfiltrate traffic.

Spring 2017 - Final

Spring 2017 - Final

● A key property of TLS is how it provides end-to-end security: two systems can
communicate using TLS without having to trust any of the intermediaries that
forward their traffic. Thus, even if an attacker completely pwns your home
router, the worst they can do to you is deny you service to your bank.

Spring 2017 - Final

Spring 2017 - Final

● RSA key exchange offers no forward secrecy, so all past sessions can be
decrypted

● With the private key, a MITM can forge the server’s signature. The MITM can
negotiate a separate TLS connection to client and server, masquerading as
the server to the client and vice versa

TLS Limitations/Issues

● The system requires us to trust Certificate Authorities
a. Some of them are less than trustworthy

● Certificate management is complicated
a. Expiring and replacing old certificates regularly
b. Revoking leaked/compromised certificates quickly
c. How does a browser know your website supports HTTPS?

● TLS can’t protect against logical errors on the client/server side like:
a. Command injection vulnerabilities
b. XSS vulnerabilities
c. Other logical flaws
d. TLS protects the CHANNEL, not the HOSTS

Web Security
“I asked my grad students for a joke about web security, and their response was:
Isn’t web security already a joke?”

~Professor Raluca sp16, fa16, sp18

“You see, that was funny!”

~Professor Raluca sp18

What’s important here?

● Same origin policy
● COOOOKIESSSSSS
● Attacks! (XSS, injection, CSRF)

What can you do with Javascript?
Change HTML content, images, style of elements, hide elements, unhide
elements, change cursor, read and change cookies.

Read cookie with JS:

var x = document.cookie;

Change cookie with JS:

document.cookie = "username=John Smith; expires=Thu, 18 Dec 2013 12:00:00
UTC; path=/";

Outer page can specify only sizing
and placement of the frame in the
outer page.

Frame isolation: Our page cannot
change contents of inner page.
Inner page cannot change
contents of outer page.

Warm up questions
1) Summarize same-origin policy.

2) What is the interface through which two different tabs with
different origins can talk to each other, in a way permitted by
same-origin policy isolation?

3) Does same-origin policy protect against an XSS attack? Why or why not?

4) Does setting the secure flag (https only) on a cookie protect against a CSRF
attack? Why or why not?

Warm up answers
1) A policy enforced by the browser that isolates the resources of an origin from
another, where an origin is defined by protocol+host+port.

2) postMessage allows sending messages between origins. The receiving origin
needs to accept this message.

3) Same-origin policy does not protect against XSS because the attack is carried
within the same origin.

4) Setting the secure flag does not protect against a CSRF attack because in this
attack, the browser automatically attaches the cookie to the request (as long as
the attacker used a https request).

Exam Question!

Rest in Peace (DON’T WORRY IT’S NOT BROCCOLI)

