Web Security:
Session management and CSRF

CS 161: Computer Security

Prof. Raluca Ada Popa
April 5, 2018

Credit: this deck is a combination of my slides and slide adaptations from previous offerings of this course and from CS 241 of Prof. Dan Boneh

Cookie policy versus
same-origin policy

Cookie policy: when browser sends cookie

@ GET //URL-domain/URL-path | SCrver

Cookie: NAME = VALUE

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Cookie policy versus same-origin policy

Consider Javascript on a page loaded from a URL U

If a cookie is in scope for a URL U, it can be accessed
by Javascript loaded on the page with URL U,

unless the cookie has the httpOnly flag set.

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u?2

domain = login.site.com domain = .site.com
path = / path = /
non-secure non-secure

nttp://checkout.site.com/ cookie: userid=u2
nttp://login.site.com/ cookie: userid=ul, userid=u2
nttp://othersite.com/ cookie: none

JS on each of these URLs can access all cookies that would be sent for that
URL if the httpOnly flag is not set

Indirectly bypassing same-origin
policy using cookie policy

Since the cookie policy and the same-origin policy are
different, there are corner cases when one can use
cookie policy to bypass same-origin policy

@ Ideas how?

Example

Victim user browser

financial.example.com

cookie jar for *.example.com

web server

blog.example.com
web server

(assume attacker
compromised this web server)

Browsers maintain a separate cookie jar per
domain group, such as one jar for *.example.com
to avoid one domain filling up the jar and
affecting another domain. Each browser decides
at what granularity to group domains.

Example

Victim user browser

financial.example.com
web server

S —

example.com

blog.example.com

financial.example.com wiEl5 semE

(assume attacker
compromised this web server)

Attacker sets many cookies with
domain example.com which

cookie jar for *.example.com overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

Victim user browser

financial.example.com
web server

%3¢ example.com

example.com

blog.example.com
web server

example.com

4 example.com

(assume attacker
compromised this web server)

Attacker sets many cookies with
domain example.com which

cookie jar for *.example.com overflows the cookie jar for_ domain
*.example.com and overwrites
cookies from financial.example.com

Example

Victim user browser

financial.example.com
web server

When Alice visits
financial.example.com, the
browser automatically
attaches the attacker’s
cookies due to cookie
policy (the scope of the
cookies is a domain suffix
of financial.example.com)

#"example.com

example.com

cookie jar for *.example.com
Why is this a problem?

Indirectly bypassing same-origin
policy using cookie policy

Victim thus can login into attackers account at
financial.example.com

This is a problem because the victim might think its
their account and might provide sensitive information

This bypassed same-origin policy (indirectly) because
blog.example.com influenced financial.example.com

RFC6265

- For further details on cookies, checkout the standard
RFC6265 "HTTP State Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this reference,
and any differences are browser specific

Session management

Sessions

A sequence of requests and responses from
one browser to one (or more) sites

= Session can be long (Gmail - two weeks)
or short

= without session mgmt:

users would have to constantly re-authenticate

Session mgmt:
= Authorize user once;
= All subsequent requests are tied to user

Pre-history: HTTP auth

One username and password for a group of users
HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required"

)

Authentication Required

Q A username and password are being requested by https://crypto.stanford.edu. The site says:
"Password Required”

User Name: hel|o|

Password: eeesesseee

| 0K | ‘ Cancel ’

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczZI1NXRleHQ=

HTTP auth problems

Hardly used in commercial sites

= User cannot log out other than by closing browser
» What if user has multiple accounts?
» What if multiple users on same computer?

= Site cannot customize password dialog
= Confusing dialog to users

= Easily spoofed

Session tokens

Browser

GET /index.html

g

Web Site

set anonymous session token

GET /books.html <
anonymous session token

POST /do-login

Username & password

check
credential

elevate to a logged-in session token

POST /checkout <
logged-in session token

(later)

Validate
token

Storing session tokens:
Lots of options (but none are perfect)

* Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

* Embedd in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

* In a hidden form field:

<input type="hidden” name="sessionid”
value="kh7y3b">

Storing session tokens: problems

* Browser cookie:

browser sends cookie with every request,
even when it should not (CSRF)

 Embed in all URL links:
token leaks via HTTP Referer header
users might share URLs

* In a hidden form field: short sessions only

Better answer: a combination of all of the above (e.q.,
browser cookie with CSRF protection using form secret
tokens)

Cross Site Request Forgery

Top web vulnerabilities

OWASP Top 10 — 2010 (Previous) OWASP Top 10 — 2013 (New)
Al - Injection Al - Injection
A3 - Broken Authentication and Session Management A2 - Broken Authentication and Session Management
A2 - Cross-Site Scripting (XSS) A3 — Cross-Site Scripting (XSS)
A4 - Insecure Direct Object References A4 - Insecure Direct Object References
A6 — Security Misconfiguration A5 — Security Misconfiguration
A7 - Insecure Cryptographic Storage — Merged with A9 - A6 - Sensitive Data Exposure

dened into =2

A5 — Cross-Site Request Forgery (CSRF) A8 — Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 - Using Known Vulnerable Components

21

HTML Forms

Allow a user to provide some data which gets sent with
an HTTP POST request to a server

<form action="bank.com/action.php">
First name:

First name: <input type="text" name="firstname™ [o ..

Last name:<input type="text" name="lastname">
Submit

<input type="submit" value="Submit"></form>

When filling in Alice and Smith, and clicking submit, the browser issues

HTTP POST request bank.com/action.php?firsthame=Alice&lastname=Smith

As always, the browser attaches relevant cookies

Consider cookie storing session
token

Server assigns a session token to each user after
they logged in, places it in the cookie

The server keeps a table of username to current
session token, so when it sees the session token it
knows which user

Session using cookies

Browser

[e—

POST/ login.cgi

Server

Set—cook'\e: gession token

——

b

GET/_POST...
OOKkije: Session token

response

—

Basic picture

jon
@ estab\'\s\'\ 5ess\O
o\
ed reque
@ cend forg ° -

@

Server Victim bank.com

a COOKie for
= bank.com
with session token

Attack Server

What can go bad? URL contains transaction action

Cross Site Request Forgery (CSRF)

@ Example:

= User logs in to bank.com
+ Session cookie remains in browser state

= User visits malicious site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

= Browser sends user auth cookie with request
+ Transaction will be fulfilled

@ Problem:
= Cookie auth is insufficient when side effects occur

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

ent=attacker&amou
Ll Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

Squigler demo

YoulIMiT: 2008 CSRF attack

An attacker could

« add videos to a user’s "Favorites,"

« add himself to a user’s "Friend" or "Family" list,

« send arbitrary messages on the user’s behalf,

» flagged videos as inappropriate,

« automatically shared a video with a user’s contacts,
subscribed a user to a "channel" (a set of videos
published by one person or group), and

» added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

Home -+ Security = Facebook Hit by Cross-Site Request Forgery Attack

Facebook Hit by Cross-Site Request Forgery Attack

By Sean Michael Kerner | August 20, 2009 [— | (s34 |

Angela Moscaritolo

September 30, 2008

Popular websites fall victim to CSRF exploits

Defenses

ideas?

CSRF Defenses

CSRF token
p <input type=hidden value=23a3af@lb>
RFII‘LS

Referer Validation

facebook Referer: http://www.facebook.com/home.php

Others (e.qg., custom HTTP Header) we won't go into

CSRF token

1. goodsite.com server wants to protect itself, so it
includes a secret token into the webpage (e.g., in forms
as a hidden field)

2. Requests to goodsite.com include the secret

3. goodsite.com server checks that the token embedded in
the webpage is the expected one; reject request if not

Can the token be?
123456

Dateofbirth
CSRF token must be hard to guess by the attacker

How token is used

. The server stores state that binds the user's CSRF

token to the user's session id
. Embeds CSRF token in every form

. On every request the server validates that the
supplied CSRF token is associated with the user's
session id

. Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

Other CRSF protection: Referer Validation

-~ When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

— This information in the Referer header could be used to

distinguish between same site request and cross site
request

Referer Validation

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

[~ Remember me

or Sign up for Facebook

Forgot your password?

Referer Validation Defense

#® HTTP Referer header
= Referer: http://www.facebook.com/ ‘/
= Referer: http://www.attacker.com/evil.html X
= Referer:
+ Strict policy disallows (secure, less usable)
+ Lenient policy allows (less secure, more usable)

Privacy Issues with Referer header

. The referer contains sensitive information that
impinges on the privacy

. The referer header reveals contents of the
search query that lead to visit a website.

. Some organizations are concerned that
confidential information about their corporate
intranet might leak to external websites via
Referer header

Referer Privacy Problems

Referer may leak privacy-sensitive information
http://intranet.corp.apple.com/
projects/iphone/competitors.html

4 Common sources of blocking:
= Network stripping by the organization
= Network stripping by local machine
= Stripped by browser for HTTPS -> HTTP transitions
= User preference in browser

Summary: sessions and CSRF

Cookies add state to HTTP
= Cookies are used for session management

= They are attached by the browser automatically to
HTTP requests

CSRF attacks execute request on benign site because
cookie is sent automatically

@ Defenses for CSRF:
= embed unpredicatable token and check it later
= check referer header

