
Web Security:
Session management and CSRF

CS 161: Computer Security
Prof. Raluca Ada Popa

April 5, 2018

Credit: this deck is a combination of my slides and slide adaptations from previous offerings of this course and from CS 241 of Prof. Dan Boneh

Cookie policy versus
same-origin policy

Cookie policy: when browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Cookie policy versus same-origin policy

Consider Javascript on a page loaded from a URL U
If a cookie is in scope for a URL U, it can be accessed
by Javascript loaded on the page with URL U,
unless the cookie has the httpOnly flag set.

Examples

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

JS on each of these URLs can access all cookies that would be sent for that
URL if the httpOnly flag is not set

Indirectly bypassing same-origin
policy using cookie policy

Since the cookie policy and the same-origin policy are
different, there are corner cases when one can use
cookie policy to bypass same-origin policy
Ideas how?

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

financial.example.com

cookie jar for *.example.com

Browsers maintain a separate cookie jar per
domain group, such as one jar for *.example.com
to avoid one domain filling up the jar and
affecting another domain. Each browser decides
at what granularity to group domains.

blog.example.com

Cookie domains:

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

financial.example.com

cookie jar for *.example.com

blog.example.com

example.com

example.com

GET

set-cookie:

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

example.com

cookie jar for *.example.com

example.com

example.com

example.com

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Example

financial.example.com
web server

Victim user browser

example.com

cookie jar for *.example.com

example.com

example.com

example.com

GET

When Alice visits
financial.example.com, the
browser automatically
attaches the attacker’s
cookies due to cookie
policy (the scope of the
cookies is a domain suffix
of financial.example.com)

Why is this a problem?

Indirectly bypassing same-origin
policy using cookie policy

Victim thus can login into attackers account at
financial.example.com
This is a problem because the victim might think its
their account and might provide sensitive information
This bypassed same-origin policy (indirectly) because
blog.example.com influenced financial.example.com

RFC6265
- For further details on cookies, checkout the standard

RFC6265 “HTTP State Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this reference,
and any differences are browser specific

Session management

Sessions
A sequence of requests and responses from
one browser to one (or more) sites
n Session can be long (Gmail - two weeks)

or short

n without session mgmt:

Session mgmt:
n Authorize user once;
n All subsequent requests are tied to user

users would have to constantly re-authenticate

Pre-history: HTTP auth

HTTP request: GET /index.html
HTTP response contains:

WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

One username and password for a group of users

HTTP auth problems
Hardly used in commercial sites

n User cannot log out other than by closing browser
w What if user has multiple accounts?
w What if multiple users on same computer?

n Site cannot customize password dialog

n Confusing dialog to users

n Easily spoofed

Session tokens
Browser Web Site

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials
(later)

Validate
token

Storing session tokens:
Lots of options (but none are perfect)

• Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

• Embedd in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

• In a hidden form field:
<input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Storing session tokens: problems
• Browser cookie:

browser sends cookie with every request,
even when it should not (CSRF)

• Embed in all URL links:
token leaks via HTTP Referer header
users might share URLs

• In a hidden form field: short sessions only

Better answer: a combination of all of the above (e.g.,
browser cookie with CSRF protection using form secret
tokens)

Cross Site Request Forgery

Top web vulnerabilities

21

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

HTML Forms
Allow a user to provide some data which gets sent with
an HTTP POST request to a server

<form action="bank.com/action.php">

First name: <input type="text" name="firstname">

Last name:<input type="text" name="lastname">

<input type="submit" value="Submit"></form>

HTTP POST request bank.com/action.php?firstname=Alice&lastname=Smith

When filling in Alice and Smith, and clicking submit, the browser issues

As always, the browser attaches relevant cookies

Consider cookie storing session
token

Server assigns a session token to each user after
they logged in, places it in the cookie
The server keeps a table of username to current
session token, so when it sees the session token it
knows which user

Session using cookies

ServerBrowser

Basic picture

Attack Server

Server Victim bank.com

User Victim

1

2

4

cookie for
bank.com
with session token

What can go bad? URL contains transaction action

Cross Site Request Forgery (CSRF)
Example:
n User logs in to bank.com

w Session cookie remains in browser state

n User visits malicious site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …
<script> document.F.submit(); </script>

n Browser sends user auth cookie with request
w Transaction will be fulfilled

Problem:
n cookie auth is insufficient when side effects occur

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Squigler demo

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF attack

Defenses

ideas?

CSRF Defenses
CSRF token

Referer Validation

Others (e.g., custom HTTP Header) we won’t go into

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

CSRF token
1. goodsite.com server wants to protect itself, so it

includes a secret token into the webpage (e.g., in forms
as a hidden field)

2. Requests to goodsite.com include the secret
3. goodsite.com server checks that the token embedded in

the webpage is the expected one; reject request if not
Can the token be?

• 123456

• Dateofbirth

CSRF token must be hard to guess by the attacker

! The server stores state that binds the user's CSRF
token to the user's session id

! Embeds CSRF token in every form
! On every request the server validates that the

supplied CSRF token is associated with the user's
session id

! Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

How token is used

– When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

– This information in the Referer header could be used to
distinguish between same site request and cross site
request

Other CRSF protection: Referer Validation

Referer Validation

Referer Validation Defense
HTTP Referer header
n Referer: http://www.facebook.com/
n Referer: http://www.attacker.com/evil.html
n Referer:

w Strict policy disallows (secure, less usable)
w Lenient policy allows (less secure, more usable)

ü
û
?

! The referer contains sensitive information that
impinges on the privacy

! The referer header reveals contents of the
search query that lead to visit a website.

! Some organizations are concerned that
confidential information about their corporate
intranet might leak to external websites via
Referer header

Privacy Issues with Referer header

Referer Privacy Problems
Referer may leak privacy-sensitive information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

Common sources of blocking:
n Network stripping by the organization
n Network stripping by local machine
n Stripped by browser for HTTPS -> HTTP transitions
n User preference in browser

Summary: sessions and CSRF
Cookies add state to HTTP
n Cookies are used for session management
n They are attached by the browser automatically to

HTTP requests
CSRF attacks execute request on benign site because
cookie is sent automatically
Defenses for CSRF:
n embed unpredicatable token and check it later
n check referer header

