Security Principles

Computer Science 161 Spring 2019 Popa & Wes

Happy Birthday, Linux!

Here's your cake, go ahead and compile it yourself.

Announcement: Logistics

omputer Science 161 Spring 2019

Pona & Weav

- Project 1 & Homework 1: Released on January 28th
- Get in your accommodation requests on midterms/final:
 - MT1: Feb 21, 7pm 9pm.
 - MT2: Mar 13, 7pm 9pm.
 - Final: May 16, 3pm 6pm.

The Properties We Want in a Safe

omputer Science 161 Spring 2019

Popa & Weav

- We want the inside to be inaccessible to an attacker
 - But what sort of attacker?
 - But how much time does the attacker have?
- We want to measure how much time & capabilities needed for an attacker
 - For a safe, ratings communicate how much based on experts performing the attack
 - Such security ratings are much harder in the computer security side

Security Rating: A Real Safe

omputer Science 161 Spring 2019

Pona & Weave

- TL-15:
 - An expert with common tools will take
 >= 15 minutes to break in
- May even have "relockers"
 - EG, a pane of glass which, if shattered when trying to drill for the combo lock, causes the safe to freeze closed!

Security Rating: A Stronger Safe

Computer Science 161 Spring 2019

Popa & Weav

- TL-30:
 - The same expert and tools now takes 30 minutes

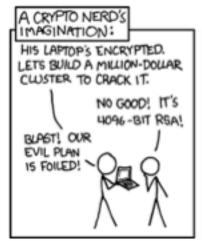
Security Rating: Now We Are Talking

Computer Science 161 Spring 2019

Popa & Weave

- TRTL-30
 - 30 minute to break with tools and/or a cutting torch

Security Rating: Maximum Overkill...


Computer Science 161 Spring 2019

TXTL-60:

 60 minutes with tools, torches, and up to 4 oz of explosives!

Far easier to use "Rubber Hose
 Cryptanalysis" on someone who knows the

combination

- 8

Security Rating:

Computer Science 161 Spring 201

Popa & Weav

- This is legally a "gun safe"
 - Meets the California requirements for "safe" storage of a handgun
- But it is practically snake oil:
 - Cylindrical locks can often be opened with a Bic pen
 - Some safes like this open if you just drop them a foot!
- So why do people buy this?
 - It creates an *illusion* of security
 - It meets the *legal requirement* for security

Lesson: Security is economics

computer Science 161 Spring 2019

Popa & Weave

- More security (generally) costs more
 - If it costs the same or less and doesn't impose other costs, you'd always go with "more security"
- Standards often define security
 - The safe standards from Underwriters Laboratories
 - If you are selling a real safe to a customer who knows what they are buying, you have to meet theses standards
 - The "gun safe" standards from the California Department of Justice

Computer Science 161 Spring 2019

Mac and OSX Downloads - µTorrent® (uTorrent) - a (very) tiny ...

www.utorrent.com/downloads/mac *

Download the official µTorrent® (uTorrent) torrent client for Windows, Mac, Android or Linux-- uTorrent ... For Mac (1.42 MB); English (US) - November 27, 2016.

uTorrent (Mac)

μtorrent estable(1.8.7 build 43001). Para Mac (1.42 MB); Inglés ...

More results from utorrent.com »

Download

μTorrent Stable(1.8.7 build 43001). Für Mac (1.42 MB); Englisch ...

uTorrent (Mac) - Free download

https://utorrent.en.softonic.com/mac *

**** Rating: 3 - 550 votes - Free - Mac OS - Utilities/Tools

uTorrent, free download. uTorrent 1.8.6: Super lightweight torrent client for Mac. uTorrent for Mac is a lightweight and efficient BitTorrent client that allows you to ...

Computer Science 161 Spring 2019
Popa & Weaver

uTorrent.dmg

IMPORTANT - Read this
License Agreement carefully
before clicking on the
"Agree" button. By clicking
on the "Agree" button, you
agree to be bound by the
terms of the License
Agreement.

LICENSE AGREEMENT

Please review the license terms before installing μ Torrent

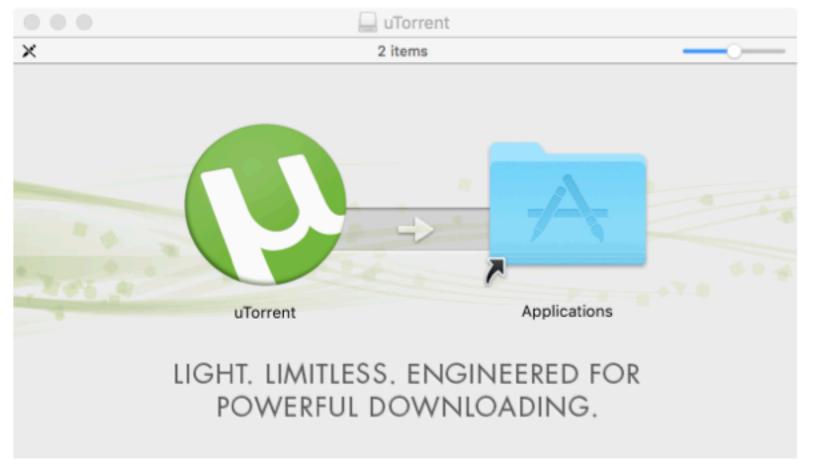
 μ Torrent (also known as uTorrent) is a peer-to-peer file sharing application distributed by BitTorrent, Inc.

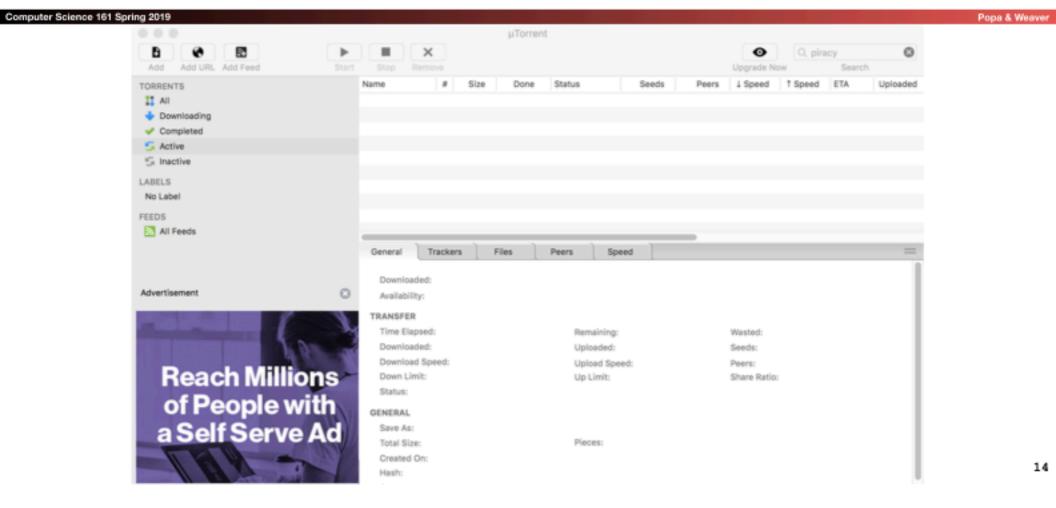
By accepting this agreement or by installing μ Torrent, you agree to the following μ Torrent-specific terms, notwithstanding anything to the contrary in this agreement.

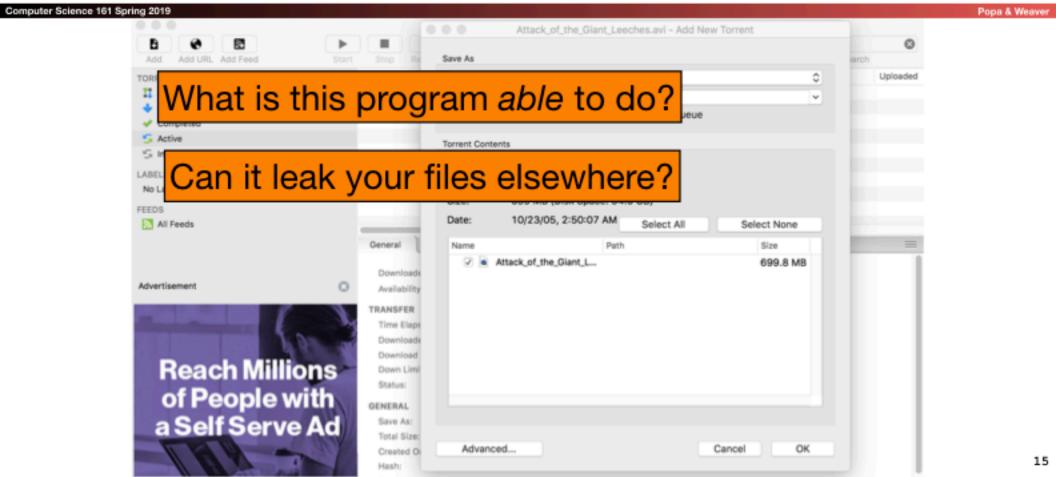
License.

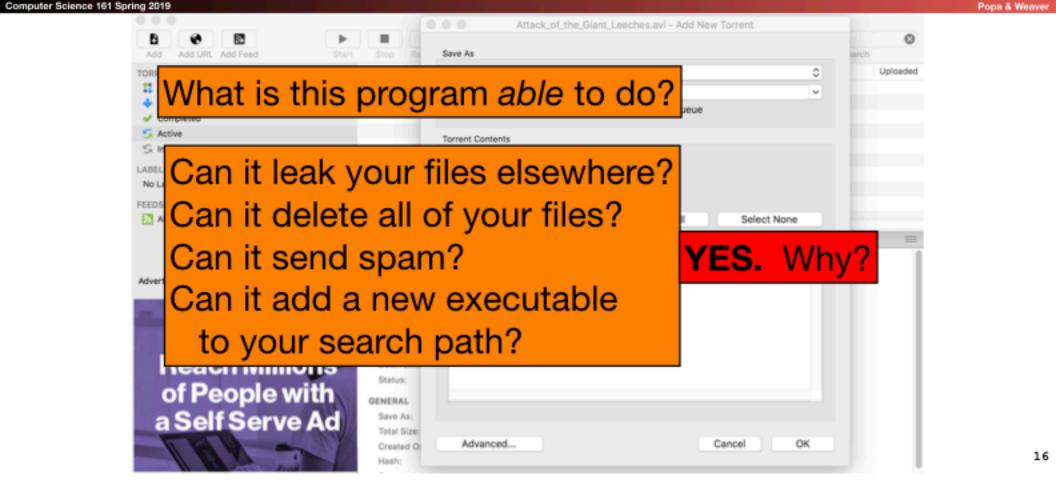
Subject to your compliance with these terms and conditions, BitTorrent, Inc. grants you a royalty-free, non-exclusive, non-transferable license to use μ Torrent, solely for your personal, non-commercial purposes. BitTorrent, Inc. reserves all rights in μ Torrent not expressly granted to you here.

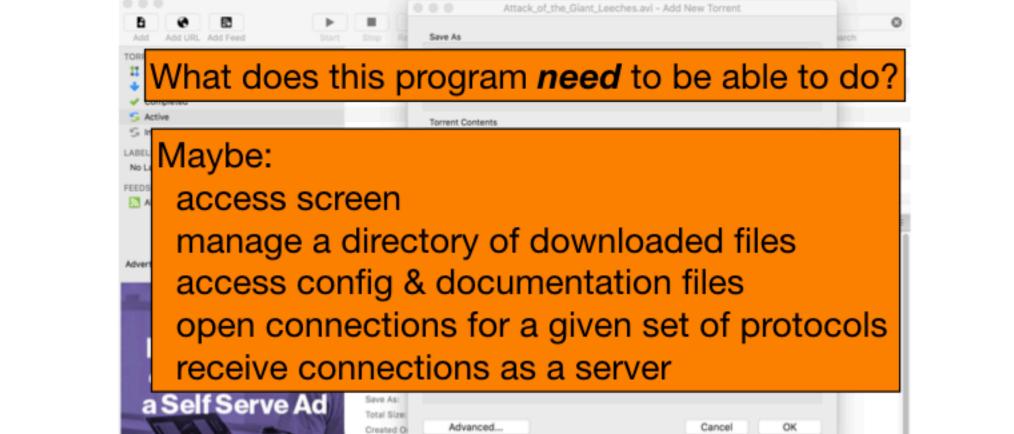
Restrictions.


The source code, design, and structure of µTorrent are trade secrets. You


Print


Save...


Disagree


Agree

Computer Science 161 Spring 2019

Check for Understanding

omputer Science 161 Spring 2019

Popa & Weav

 We've seen that laptop/desktop platforms grant applications a lot of privileges

 Quiz: Name a platform that does a better job of least privilege

So What Do You Think Here?

Computer Science 161 Spring 2019

Popa & Weaver

Allow "Adult Cat Finder" to access your location while you use the app?

We use your location to find nearby adorable cats.

Don't Allow

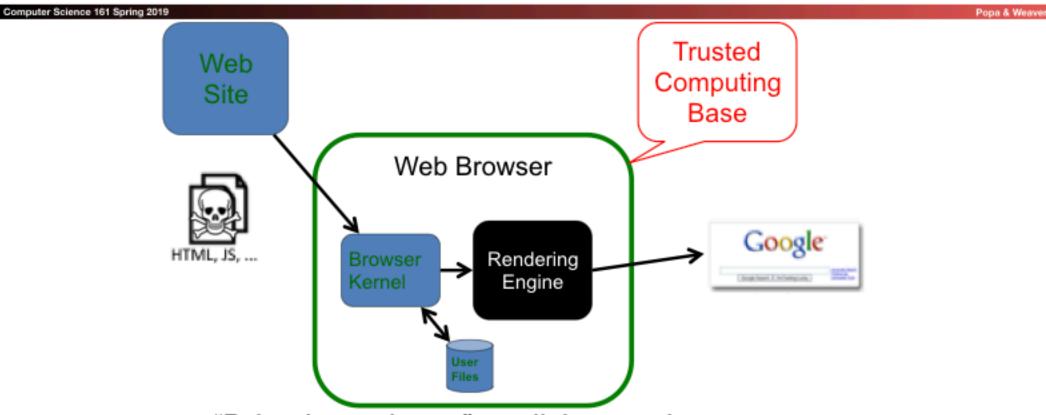
Allow

Thinking About Least Privilege

omputer Science 161 Spring 2019

Popa & Weav

- When assessing the security of a system's design, identify the Trusted Computing Base (TCB).
 - What components does security rely upon?
- Security requires that the TCB:
 - Is correct
 - Is complete (can't be bypassed)
 - Is itself secure (can't be tampered with)
- Best way to be assured of correctness and its security?
 - KISS = Keep It Simple, Stupid!
 - Generally, Simple = Small
- One powerful design approach: privilege separation
 - Isolate privileged operations to as small a component as possible


The Base for Isolation: The Operating System...

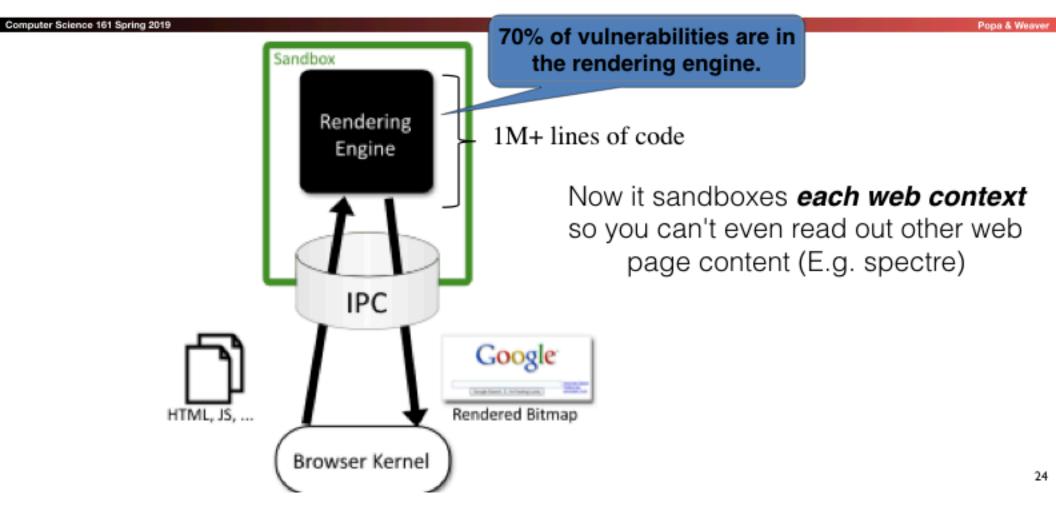
omputer Science 161 Spring 2019

Popa & Weav

- The operating system process provide the following "guarentees" (you hope)
 - Isolation: A process can not access (read or write) the memory of any other process
 - Permissions: A process can only change files etc if it has permission to
 - This usually means "Anything that the user can do" in something like Windows or MacOS
 - It can be considerably less in Android or iOS
 - But even in Windows, MacOS, & Linux one can say "I don't want any permissions"

Web browser

"Drive-by malware": malicious web page exploits browser bug to infect local files


The Chrome browser

Computer Science 161 Spring 2019

Sandbox Goal: prevent "drive-by Rendering malware", where a malicious Engine web page exploits a browser bug to infect local files **IPC** Google Rendered Bitmap HTML, JS, ... TCB (for this property) Browser Kernel

23

The Chrome browser

Ensuring Complete Mediation

omputer Science 161 Spring 2019

Popa & Weave

 To secure access to some capability/resource, construct a reference monitor

- Single point through which all access must occur
 - E.g.: a network firewall
- Desired properties:
 - Un-bypassable ("complete mediation")
 - Tamper-proof (is itself secure)
 - Verifiable (correct)
 - (Note, just restatements of what we want for TCBs)
- One subtle form of reference monitor flaw concerns race conditions ...

A Failure of Complete Mediation

Computer Science 161 Spring 2019

Time of Check to Time of Use Vulnerability: Race Condition

omputer Science 161 Spring 2019

Popa & Weave

```
procedure withdrawal(w)
```

// contact central server to get balance

1. let b := balance

Suppose that here an attacker arranges to suspend first call, and calls withdrawal again concurrently

2. if b < w, abort

// contact server to set balance

- 3. set balance := b w
- 4. dispense \$w to user

TOCTTOU = Time of Check To Time of Use

A Hundred Million Dollar TOCTTOU Bug...

omputer Science 161 Spring 2019

Pona & Weave

- Ethereum is a cryptocurrency which offers "smart" contracts
 - Program you money in a language that makes JavaScript and PHP look beautiful and sound
- The DAO (Distributed Autonomous Organization) was an attempt to make a distributed mutual fund in Ethereum
 - Participants could vote on "investments" that should be made
 - Of course nobody actually had any idea what to do with the "investments" but hey, its the DAO! Gotta get in on the DAO!
- The DAO supported withdrawals as well
 - What is the point of a mutual fund that you couldn't take your money out of?

A "Feature" In The Smart Contract

omputer Science 161 Spring 2019

Popa & Weave

- To withdraw, the code was:
 - Check the balance, then send the money, then decrement the balance
- But sending money in Ethereum can send to another program written by the recipient
- So someone "invested", then did a withdraw to his program
 - Which would initiate another withdraw...


```
public void buyItem(Account buyer, Item item) {
  if (item.cost > buyer.balance)
    return; /* they can't afford it */
  buyer.possessions.put(item); /* provide item */
  buyer.possessionsUpdated(); /* freshen screen */
  buyer.balance -= item.cost; /* deduct cost */
  buyer.balanceUpdated(); /* freshen screen */
```

What if an uncaught exception happens here?

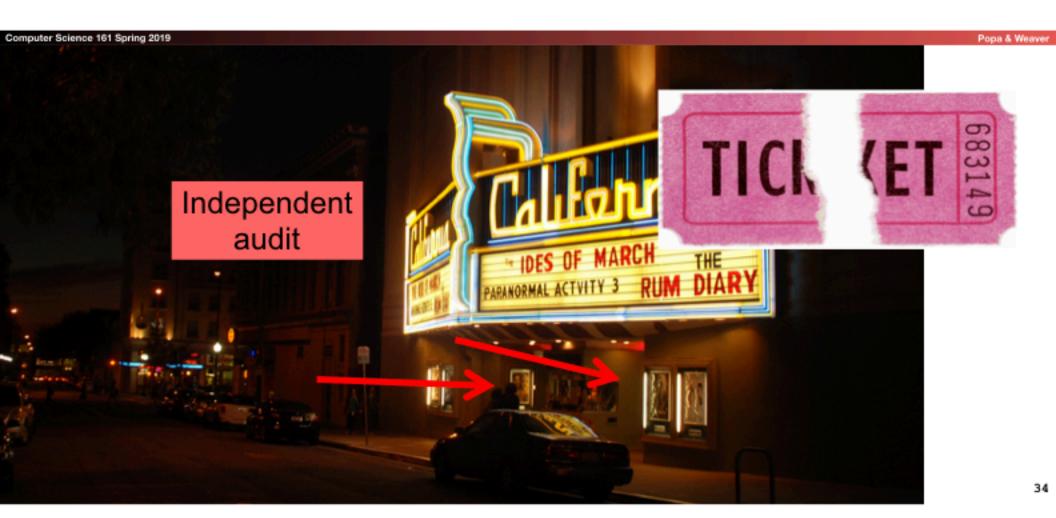
Welcome to a Nuclear Bunker

Computer Science 161 Spring 2019

Popa & Weave

Two Man Control: Each Needs To Turn the Key

Computer Science 161 Spring 2019


ropa a mean

Desired Security Property: Only Want To Destroy The World On Purpose

Computer Science 161 Spring 2019 NO LONE ZONE SAC TWO MAN POLICY MANDATORY

"Separation of responsibility."

Summary: Notions Regarding Managing Privilege

computer Science 161 Spring 2019

Popa & Weave

- Least privilege
 - The notion of avoiding having unnecessary privileges
- Privilege separation
 - A way to achieve least privilege by isolating access to privileges to a small Trusted Computing Base (TCB)
- Separation of responsibility
 - If you need to have a privilege, consider requiring multiple parties to work together (collude) to exercise it

Impact of a Password Policy

Computer Science 161 Spring 2019

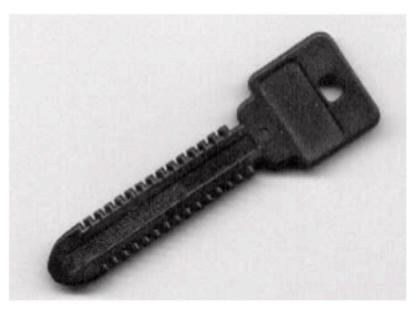
Popa & Weaver

Computer Science 161 Spring 2019
Popa & Wear

Computer Science 161 Spring 2019

Computer Science 161 Spring 2019

Computer Science 161 Spring 2019
Popa & Weaver

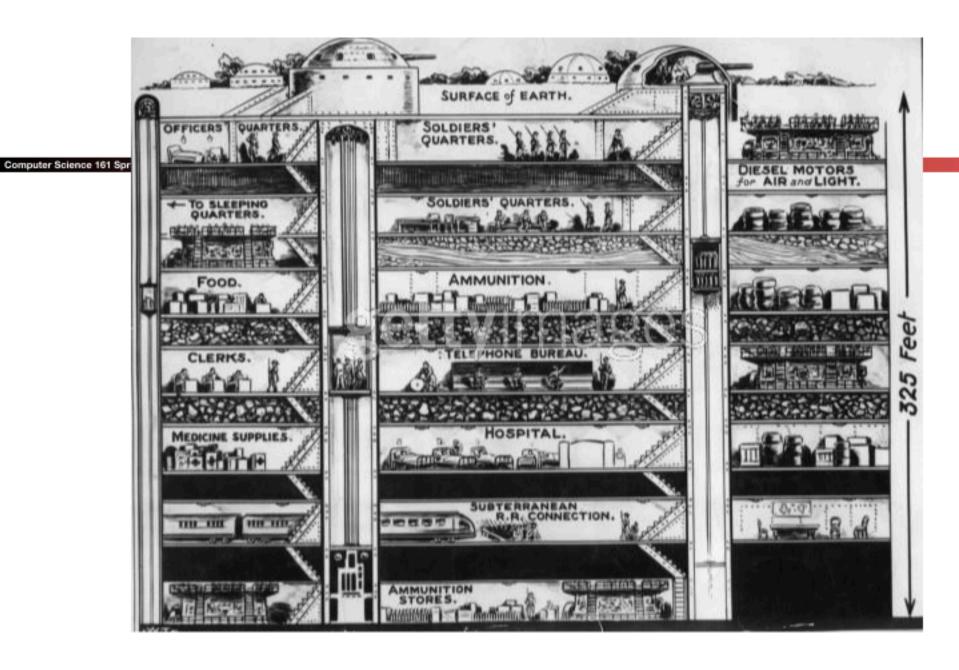


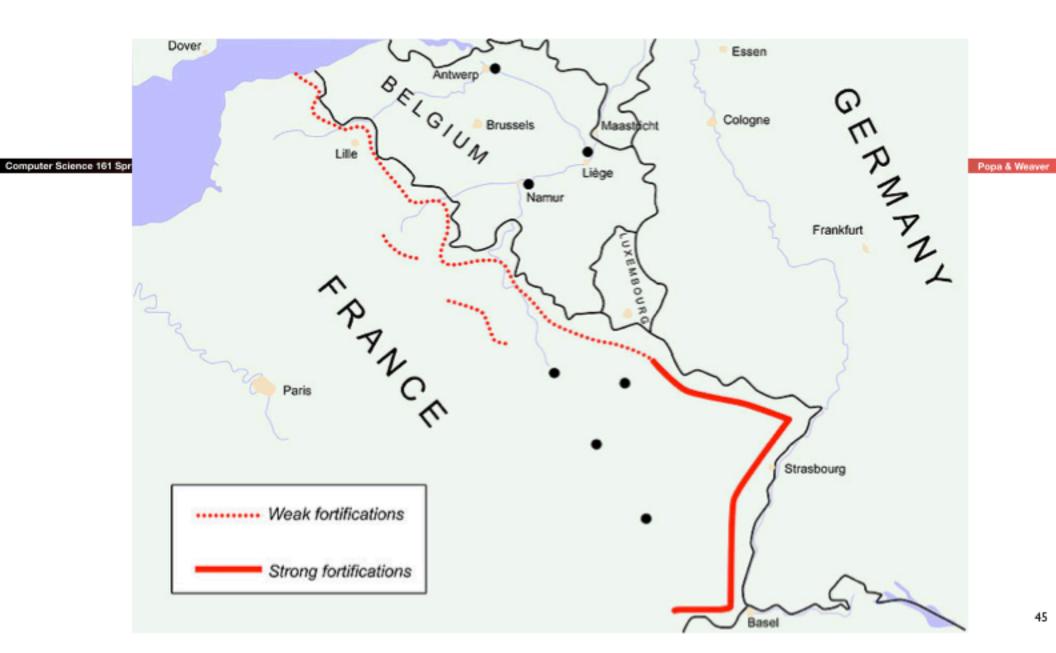
Security Keys and Human Factors

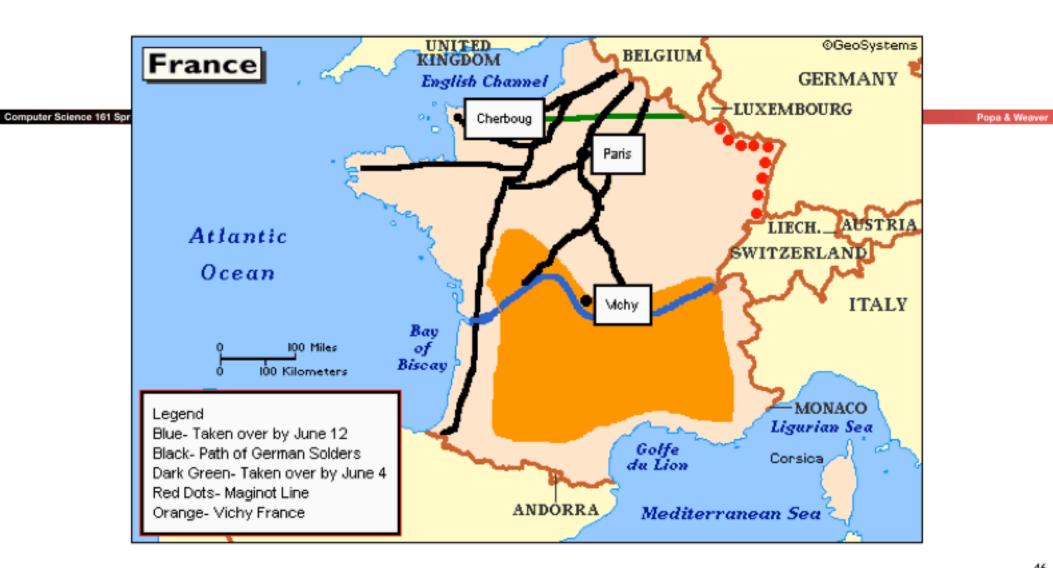
computer Science 161 Spring 2019

Popa & Weave

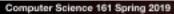
This is a security key for storing key material for an encrypted military phone




Summary: Dealing with Users


Computer Science 161 Spring 2019

- Psychological acceptability
 - Will users abide a security mechanism, or decide to subvert it?
- Consider human factors
 - Does a security mechanism assume something about human behavior when interacting with the system that might not hold, even in the absence of conscious decisions by the users to subvert



"Only as secure as the weakest link."

Computer Science 161 Spring 201

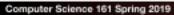
Popa & Weav

"A door lock is only as strong as the window"

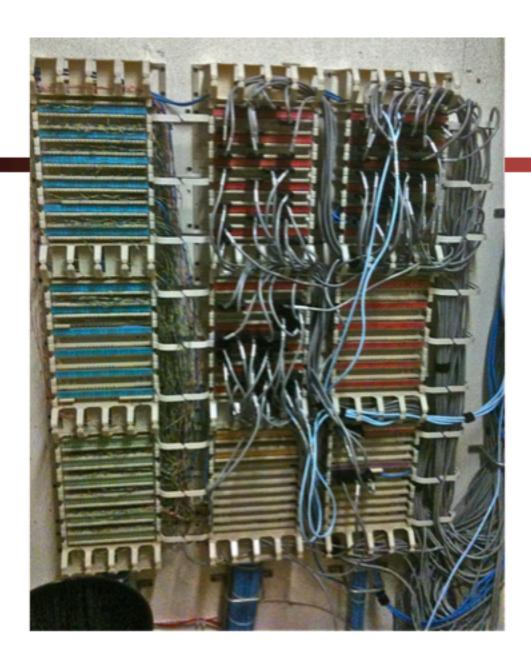
Computer Science 161 Spring 2019

"Don't rely on security through obscurity."

computer Science 161 Spring 2019


- Because otherwise the raptors will get you...
- Obscurity does help but you need to design your system so that it fails...
- Kerckhoffs's Principle:
 - A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
- Shannon's Maxim:
 - The enemy knows the system

"Trusted path."


Computer Science 161 Spring 2019

- Users need to know they are talking with the legit system
- System needs to know its talking with the legit user
- These channels need to be unspoofable and private
 - ATM skimmers are a failure of the trusted path

Computer Science 161 Spring 2019

Computer Science 161 Spring 2019

Protection?

"Use fail-safe defaults."

omputer Science 161 Spring 2019

- But it can often be hard to determine
- Default for access here is reasonable...
 - Deny all except for an allowed user list
- But when the power goes out...
- Should the lock fail shut?
 Should the lock fail open?

Common Assumptions When Discussing Attacks

computer Science 161 Spring 2019

- (Note, these tend to be pessimistic ... but prudent)
- Attackers can interact with our systems without particular notice
 - Probing (poking at systems) may go unnoticed ...
 - ... even if highly repetitive, leading to crashes, and easy to detect
- It's easy for attackers to know general information about their targets
 - OS types, software versions, usernames, server ports, IP addresses, usual patterns of activity, administrative procedures

Common Assumptions, con't

omputer Science 161 Spring 2019

- Attackers can obtain access to a copy of a given system to measure and/or determine how it works
 - Shannon's Maxim: "The Enemy Knows the System"
- Attackers can make energetic use of automation
 - They can often find clever ways to automate
- Attackers can pull off complicated coordination across a bunch of different elements/systems
- Attackers can bring large resources to bear if req'd
 - Computation, network capacity
 - But they are not super-powerful (e.g., control entire ISPs)

Common Assumptions, con't

omputer Science 161 Spring 2019

- If it helps the attacker in some way, assume they can obtain privileges
 - But if the privilege gives everything away (attack becomes trivial), then we care about unprivileged attacks
- The ability to robustly detect that an attack has occurred does not replace desirability of preventing
- Infrastructure machines/systems are well protected (hard to directly take over)
 - So a vulnerability that requires infrastructure compromise is less worrisome than same vulnerability that doesn't

Common Assumptions, con't

computer Science 161 Spring 2019

- Network routing is hard to alter ... other than with physical access near clients (e.g., "wifi/coffeeshop")
 - Such access helps fool clients to send to wrong place
- Can enable Man-in-the-Middle (MITM) attacks
- We worry about attackers who are lucky
 - Since often automation/repetition can help "make luck":
 If its 1 in a million, just try a million times!
- Just because a system does not have apparent value, it may still be a target
 - "Lets break into the Casino network... Through the fishtank"
- Attackers are mostly undaunted by fear of getting caught
 - There are exceptions