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Announcements
• Discussion sections and office hours start 

this week
• Homework 1 is out, due Feb 5
• Project 1 is out, due Feb 12



Memory safety
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How could Alice exploit this?
Find a partner and talk it through.
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char name[20];

void vulnerable() {
...
gets(name);
...

}

gets reads input from an input device (e.g., shell) 
and puts it in name until it encounters newline



char name[20];
char instrux[80] = "none";

void vulnerable() {
...
gets(name);
...

}



char name[20];
char instrux[80] = "none";

void vulnerable() {
...
gets(name);
...

}

Memory unsafe code

Reading data in name past 20 characters starts overlapping 
instrux because name and instrux are stored next to each 
other in memory



char line[512];
char command[] = "/usr/bin/finger";

void main() {
...
gets(line);
...
execv(command, ...);

}

Q: What can go wrong?
A: Execv will execute adversary chosen command



char name[20];
int (*fnptr)();

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: fnptr will point to a memory location with attacker code



char name[20];
int  seatinfirstclass = 0;

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: set seatinfirstclass to 1



char name[20];
int  authenticated = 0;

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: authenticate a user that should not be authenticated



Linux (32-bit) process memory layout 

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment 
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

Loaded from exec

-0x00000000

-0xFFFFFFFF

A register storing the top of 
the stack. 
[ Register = unit of storage 
inside the processor, 
accessed fast ] 



Stack Frame

user stack

shared 
libraries

run time heap

static data
segment

text segment 
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address
stack frame pointer

exception handlers

local variables

callee saved registers

To previous stack
frame pointer

To  the point at which
this function was called

Frame 
corresponding 
to function 
invocation



Code Injection



main() {
f();

}

f() {
int x;
g();

}

g() {
char buf[80];
gets(buf);

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

Stack (return addresses and local variables)

Code Injection



main() {
f();

}

f() {
int x;
g();

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

g() {
char buf[80];
gets(buf);

}

Stack (return addresses and local variables)

Code Injection



main() {
f();

}

f() {
int x;
g();

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

g() {
char buf[80];
gets(buf);

}

Stack (return addresses and local variables)

Code Injection

attacker code



Basic Stack Exploit
• Overwriting the return address allows an 

attacker to redirect the flow of program 
control.

• Instead of crashing, this can allow 
arbitrary code to be executed.

• Example: attacker chooses malicious 
code he wants executed (“shellcode”), 
compiles to bytes, includes this in the 
input to the program so it will get stored in 
memory somewhere, then overwrites 
return address to point to it.





void vulnerable() {
char buf[64];
...
gets(buf);
...

}

Local variables to a function are allocated on the stack. 



void still_vulnerable?() {
char buf = malloc(64);
...
gets(buf);
...

}

A: yes, it is still vulnerable for as long as it writes beyond 
the boundary.  There are a variety of “heap smashing” 
attacks. 

malloc allocates on heap. 



void safe() {
char buf[64];
...
fgets(buf, 64, stdin);
...

}

fgets specifies exactly how many characters to 
read so the attacker cannot supply more



void safer() {
char buf[64];
...
fgets(buf, sizeof buf, stdin);
...

}

Q: why is this safer?

A: because developer could mistake in typing 64 the 
second time



void vulnerable(int len, char *data) {
char buf[64];
if (len > 64)
return;

memcpy(buf, data, len);
}

memcpy(void *dst, const void *src, size_t n);

Attack: attacker supplies negative len, which becomes large 
value when cast to size_t

int: integer negative and positive 
size_t: nonnegative integer 

Assume Attacker provides len and data



void safe(size_t len, char *data) {
char buf[64];
if (len > 64)
return;

memcpy(buf, data, len);
}

Fix:



void f(size_t len, char *data) {
char *buf = malloc(len+2);
if (buf == NULL) return;
memcpy(buf, data, len);
buf[len] = '\n';
buf[len+1] = '\0';

}

Vulnerable!
If len = 0xffffffff, allocates only 1 byte

Is it safe?  Talk to your partner.





Before defenses … a break
• Series: a random fact about your professors 

(professors are     human…)

Romania
Bran Castle 
(Dracula’s Castle)

in



2min break



Defenses

• Discuss with your partner some ideas



Defense #1: memory safe 
languages

• The real solution to these problems is to avoid C or C++ if 
you can. Use memory safe languages such as: Java, 
Python, Rust, Go, …, which check bounds and don’t permit 
such overflows

• Still, a lot of code is written in C 
– Performance
– Legacy code 
– Low level control



Defense #2: canaries 
Canary = a random value just before the 
return address in each stack frame
The compiler inserts:
• Code that generates and inserts a canary
• Check before returning that the canary still 

has the unmodified stored value

Args

Return address

Canary

Local vars: buf
Q: Why below return address and not after?
A: to prevent return address overwrite without 
modifying canary
Q: Why random and not a fixed value 0x324a0b?
A: so attacker does not know it



Defense #3:
Non-Executable Stack Space…

• Make stack non-executable
• The overwritten return address from the attacker 

could point to code on stack which was similarly 
injected via a buffer overflow attack. With the stack 
nonexecutable, this code cannot execute

45

Q: does it protect against all buffer overflows?
A: No. For example, it does not protect against those that 
overwrite variables such as passwords, and others. 

Not great for functionality that we cannot execute some code on 
the stack. 



Defense #4:

Data Execution Protection/ W^X (write or execute)

• Ensure each piece of memory is either writeable or executable 

but not both

– Q: What does this stop?

– A: So an attacker can no longer inject code and execute it 

• But some attacks are still possible: return oriented programming 

when the return address points to an existing snippet of code 

such as standard libraries like libc

• Set up a series of return statements to execute “gadgets” in 

the code

• This is not easy to understand, we won’t go into detail but 

there are tools to do this for you automatically: ROPgadget

• Open source:

https://github.com/JonathanSalwan/ROPgadget/tree/master

46

https://github.com/JonathanSalwan/ROPgadget/tree/master


Idea #4:

Let’s make that hard to do
• Address Space Layout Randomization…

– Randomized where library code and other text segments are 

placed in memory

– Q: Why?

– A: so the attacker does not know the address to “return” to

• Particularly powerful with W^X

– Since bypassing W^X requires only executing existing code, 

which requires knowing the address of existing codes, but 

ASLR randomizes where the existing code is.

• Good idea but…if you can get the address of a single function in 

a library, you’ve defeated ASLR and can just generate your string 

of ROP gadgets at runtime

47



Idea #5:
Write “Secure” code…

• Always bounds check, think of type 
overflow

• Difficult in C..

48



If nothing works…
Just run machine learning…

[joking]



Summary

• Memory unsafe code occurs when 
writing or reading beyond bounds of a 
variable 

• Can lead to code injection
• A variety of defenses with pros and 

cons
• Still happens today (though more rare)



Software security



Why does software have 
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools

• Programmers often aren’t security-aware.
– Learn about common types of security flaws.

• Programming languages aren’t designed well 
for security.
– Use better languages (Java, Python, …).
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Why does software have 
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools.

• Programmers often aren’t security-aware.
– Take CS 161  ;-P
– Learn about common types of security flaws.

• Programming languages aren’t designed well 
for security.
– Use better languages (Java, Python, …).



Testing for Software Security Issues

• What makes testing a program for security problems 
difficult?
– We need to test for the absence of something

• Security is a negative property!
– �nothing bad happens, even in really unusual circumstances�

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation
– Spec-driven

• How do we tell when we�ve found a problem?
– Crash or other deviant behavior

• How do we tell that we�ve tested enough?
– Hard: but code-coverage tools can help
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Testing for Software Security Issues

• What makes testing a program for security problems 
difficult?
– We need to test for the absence of something

• Security is a negative property!
– �nothing bad happens, even in really unusual circumstances�

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation: change certain statements in the source code and 

see if the tests find the errors
– Spec-driven: test code of a function matches spec of that 

function
• How do we tell when we’ve found a problem?

– Crash or other deviant behavior; now enable expensive checks



Working Towards Secure Systems
• Along with securing individual components, we 

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the �patch treadmill�) …





Working Towards Secure Systems
• Along with securing individual components, 

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the �patch treadmill�) …
• … and can be difficult to track just what’s needed where

• Other (complementary) approaches?
– Vulnerability scanning: probe your systems/networks 

for known flaws
– Penetration testing (�pen-testing�): pay someone to 

break into your systems …



Reasoning About Safety

• How can we have confidence that our code executes in a 
safe (and correct, ideally) fashion?

• Approach: build up confidence on a function-by-function / 
module-by-module basis

• Modularity provides boundaries for our reasoning:
– Preconditions: what must hold for function to operate correctly
– Postconditions: what holds after function completes

• These basically describe a contract for using the module
• These notions also apply to individual statements (what 

must hold for correctness; what holds after execution)
– Stmt #1’s postcondition should logically imply Stmt #2’s 

precondition
– Invariants: conditions that always hold at a given point in a 

function



int deref(int *p) {
return *p;

}

Precondition?
(what needs to hold at the time of entering the function for 
the function to operate correctly)



/* requires: p != NULL 
(and p a valid pointer) */

int deref(int *p) {
return *p;

}

Precondition?
(what needs to hold at the time of entering the function for 
the function to operate correctly)



void *mymalloc(size_t n) {
void *p = malloc(n);
if (!p) { perror("malloc"); exit(1); }
return p;

}

Postcondition?



/* ensures: retval != NULL (and a valid pointer) */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) { perror("malloc"); exit(1); }
return p;

}

Postcondition: what the function 
promises will hold upon its return



int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

Precondition?
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General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function 
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int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
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int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* ?? */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function



int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: a != NULL &&

0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function
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int total = 0;
for (size_t i=0; i<n; i++)
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total += a[i];

return total;
}

General correctness proof strategy for memory safety:
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int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: a != NULL &&

0 <= i && i < size(a) */
total += a[i];

return total;
}

Let’s simplify, given that a never changes.



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}
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return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

?

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function? 



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function? 

�



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

�

The 0 <= i part is clear, so let’s focus for now on the rest.



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];

return total;
}



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function? 

?



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function? 

?



/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

What about i < n ?  



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

What about i < n ?  That follows from the loop condition.



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

At this point we know the proposed invariant will always hold...



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant: a != NULL &&

0 <= i && i < n && n <= size(a) */
total += a[i];

return total;
}

… and we’re done!



/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant: a != NULL &&

0 <= i && i < n && n <= size(a) */
total += a[i];

return total;
}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.
Induction: show that postcondition of last statement of 

loop plus loop test condition implies invariant.



Questions?


