
Memory Safety
Software Security

CS 161: Computer Security
Prof. Raluca Ada Popa

January 29, 2018

Some slides credit to David Wagner and Nick Weaver

Announcements
• Discussion sections and office hours start

this week
• Homework 1 is out, due Feb 5
• Project 1 is out, due Feb 12

Memory safety

#293 HRE-THR 850 1930
ALICE SMITH
COACH

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930
ALICE SMITHHHHHHHHHHH
HHACH

SPECIAL INSTRUX: NONE

How could Alice exploit this?
Find a partner and talk it through.

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: GIVE
PAX EXTRA CHAMPAGNE.

char name[20];

void vulnerable() {
...
gets(name);
...

}

gets reads input from an input device (e.g., shell)
and puts it in name until it encounters newline

char name[20];
char instrux[80] = "none";

void vulnerable() {
...
gets(name);
...

}

char name[20];
char instrux[80] = "none";

void vulnerable() {
...
gets(name);
...

}

Memory unsafe code

Reading data in name past 20 characters starts overlapping
instrux because name and instrux are stored next to each
other in memory

char line[512];
char command[] = "/usr/bin/finger";

void main() {
...
gets(line);
...
execv(command, ...);

}

Q: What can go wrong?
A: Execv will execute adversary chosen command

char name[20];
int (*fnptr)();

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: fnptr will point to a memory location with attacker code

char name[20];
int seatinfirstclass = 0;

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: set seatinfirstclass to 1

char name[20];
int authenticated = 0;

void vulnerable() {
...
gets(name);
...

}

Q: What can go wrong?
A: authenticate a user that should not be authenticated

Linux (32-bit) process memory layout

Reserved for Kernel

user stack

shared libraries

run time heap

static data segment

text segment
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

$esp

Loaded from exec

-0x00000000

-0xFFFFFFFF

A register storing the top of
the stack.
[Register = unit of storage
inside the processor,
accessed fast]

Stack Frame

user stack

shared
libraries

run time heap

static data
segment

text segment
(program)

unused

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

arguments

return address
stack frame pointer

exception handlers

local variables

callee saved registers

To previous stack
frame pointer

To the point at which
this function was called

Frame
corresponding
to function
invocation

Code Injection

main() {
f();

}

f() {
int x;
g();

}

g() {
char buf[80];
gets(buf);

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

Stack (return addresses and local variables)

Code Injection

main() {
f();

}

f() {
int x;
g();

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

g() {
char buf[80];
gets(buf);

}

Stack (return addresses and local variables)

Code Injection

main() {
f();

}

f() {
int x;
g();

}

0xC0000000

ret

main()

retx

f()

retbuf

g()

g() {
char buf[80];
gets(buf);

}

Stack (return addresses and local variables)

Code Injection

attacker code

Basic Stack Exploit
• Overwriting the return address allows an

attacker to redirect the flow of program
control.

• Instead of crashing, this can allow
arbitrary code to be executed.

• Example: attacker chooses malicious
code he wants executed (“shellcode”),
compiles to bytes, includes this in the
input to the program so it will get stored in
memory somewhere, then overwrites
return address to point to it.

void vulnerable() {
char buf[64];
...
gets(buf);
...

}

Local variables to a function are allocated on the stack.

void still_vulnerable?() {
char buf = malloc(64);
...
gets(buf);
...

}

A: yes, it is still vulnerable for as long as it writes beyond
the boundary. There are a variety of “heap smashing”
attacks.

malloc allocates on heap.

void safe() {
char buf[64];
...
fgets(buf, 64, stdin);
...

}

fgets specifies exactly how many characters to
read so the attacker cannot supply more

void safer() {
char buf[64];
...
fgets(buf, sizeof buf, stdin);
...

}

Q: why is this safer?

A: because developer could mistake in typing 64 the
second time

void vulnerable(int len, char *data) {
char buf[64];
if (len > 64)
return;

memcpy(buf, data, len);
}

memcpy(void *dst, const void *src, size_t n);

Attack: attacker supplies negative len, which becomes large
value when cast to size_t

int: integer negative and positive
size_t: nonnegative integer

Assume Attacker provides len and data

void safe(size_t len, char *data) {
char buf[64];
if (len > 64)
return;

memcpy(buf, data, len);
}

Fix:

void f(size_t len, char *data) {
char *buf = malloc(len+2);
if (buf == NULL) return;
memcpy(buf, data, len);
buf[len] = '\n';
buf[len+1] = '\0';

}

Vulnerable!
If len = 0xffffffff, allocates only 1 byte

Is it safe? Talk to your partner.

Before defenses … a break
• Series: a random fact about your professors

(professors are human…)

Romania
Bran Castle
(Dracula’s Castle)

in

2min break

Defenses

• Discuss with your partner some ideas

Defense #1: memory safe
languages

• The real solution to these problems is to avoid C or C++ if
you can. Use memory safe languages such as: Java,
Python, Rust, Go, …, which check bounds and don’t permit
such overflows

• Still, a lot of code is written in C
– Performance
– Legacy code
– Low level control

Defense #2: canaries
Canary = a random value just before the
return address in each stack frame
The compiler inserts:
• Code that generates and inserts a canary
• Check before returning that the canary still

has the unmodified stored value

Args

Return address

Canary

Local vars: buf
Q: Why below return address and not after?
A: to prevent return address overwrite without
modifying canary
Q: Why random and not a fixed value 0x324a0b?
A: so attacker does not know it

Defense #3:
Non-Executable Stack Space…

• Make stack non-executable
• The overwritten return address from the attacker

could point to code on stack which was similarly
injected via a buffer overflow attack. With the stack
nonexecutable, this code cannot execute

45

Q: does it protect against all buffer overflows?
A: No. For example, it does not protect against those that
overwrite variables such as passwords, and others.

Not great for functionality that we cannot execute some code on
the stack.

Defense #4:

Data Execution Protection/ W^X (write or execute)

• Ensure each piece of memory is either writeable or executable

but not both

– Q: What does this stop?

– A: So an attacker can no longer inject code and execute it

• But some attacks are still possible: return oriented programming

when the return address points to an existing snippet of code

such as standard libraries like libc

• Set up a series of return statements to execute “gadgets” in

the code

• This is not easy to understand, we won’t go into detail but

there are tools to do this for you automatically: ROPgadget

• Open source:

https://github.com/JonathanSalwan/ROPgadget/tree/master

46

https://github.com/JonathanSalwan/ROPgadget/tree/master

Idea #4:

Let’s make that hard to do
• Address Space Layout Randomization…

– Randomized where library code and other text segments are

placed in memory

– Q: Why?

– A: so the attacker does not know the address to “return” to

• Particularly powerful with W^X

– Since bypassing W^X requires only executing existing code,

which requires knowing the address of existing codes, but

ASLR randomizes where the existing code is.

• Good idea but…if you can get the address of a single function in

a library, you’ve defeated ASLR and can just generate your string

of ROP gadgets at runtime

47

Idea #5:
Write “Secure” code…

• Always bounds check, think of type
overflow

• Difficult in C..

48

If nothing works…
Just run machine learning…

[joking]

Summary

• Memory unsafe code occurs when
writing or reading beyond bounds of a
variable

• Can lead to code injection
• A variety of defenses with pros and

cons
• Still happens today (though more rare)

Software security

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools

• Programmers often aren’t security-aware.
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools

• Programmers often aren’t security-aware.
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Why does software have
vulnerabilities?

• Programmers are humans.
And humans make mistakes.
– Use tools.

• Programmers often aren’t security-aware.
– Take CS 161 ;-P
– Learn about common types of security flaws.

• Programming languages aren’t designed well
for security.
– Use better languages (Java, Python, …).

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– �nothing bad happens, even in really unusual circumstances�

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation
– Spec-driven

• How do we tell when we�ve found a problem?
– Crash or other deviant behavior

• How do we tell that we�ve tested enough?
– Hard: but code-coverage tools can help

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– �nothing bad happens, even in really unusual circumstances�

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation
– Spec-driven

• How do we tell when we�ve found a problem?
– Crash or other deviant behavior

• How do we tell that we�ve tested enough?
– Hard: but code-coverage tools can help

Testing for Software Security Issues

• What makes testing a program for security problems
difficult?
– We need to test for the absence of something

• Security is a negative property!
– �nothing bad happens, even in really unusual circumstances�

– Normal inputs rarely stress security-vulnerable code
• How can we test more thoroughly?

– Random inputs (fuzz testing)
– Mutation: change certain statements in the source code and

see if the tests find the errors
– Spec-driven: test code of a function matches spec of that

function
• How do we tell when we’ve found a problem?

– Crash or other deviant behavior; now enable expensive checks

Working Towards Secure Systems
• Along with securing individual components, we

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the �patch treadmill�) …

Working Towards Secure Systems
• Along with securing individual components,

need to keep them up to date …
• What’s hard about patching?

– Can require restarting production systems
– Can break crucial functionality
– Management burden:

• It never stops (the �patch treadmill�) …
• … and can be difficult to track just what’s needed where

• Other (complementary) approaches?
– Vulnerability scanning: probe your systems/networks

for known flaws
– Penetration testing (�pen-testing�): pay someone to

break into your systems …

Reasoning About Safety

• How can we have confidence that our code executes in a
safe (and correct, ideally) fashion?

• Approach: build up confidence on a function-by-function /
module-by-module basis

• Modularity provides boundaries for our reasoning:
– Preconditions: what must hold for function to operate correctly
– Postconditions: what holds after function completes

• These basically describe a contract for using the module
• These notions also apply to individual statements (what

must hold for correctness; what holds after execution)
– Stmt #1’s postcondition should logically imply Stmt #2’s

precondition
– Invariants: conditions that always hold at a given point in a

function

int deref(int *p) {
return *p;

}

Precondition?
(what needs to hold at the time of entering the function for
the function to operate correctly)

/* requires: p != NULL
(and p a valid pointer) */

int deref(int *p) {
return *p;

}

Precondition?
(what needs to hold at the time of entering the function for
the function to operate correctly)

void *mymalloc(size_t n) {
void *p = malloc(n);
if (!p) { perror("malloc"); exit(1); }
return p;

}

Postcondition?

/* ensures: retval != NULL (and a valid pointer) */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) { perror("malloc"); exit(1); }
return p;

}

Postcondition: what the function
promises will hold upon its return

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

Precondition?

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* ?? */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires?
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: a != NULL &&

0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: a != NULL &&

0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: a != NULL &&

0 <= i && i < size(a) */
total += a[i];

return total;
}

Let’s simplify, given that a never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

?

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

�

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];

return total;
}

�

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];

return total;
}

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

/* requires: a != NULL */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

What about i < n ?

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

What about i < n ? That follows from the loop condition.

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += a[i];

return total;
}

?

At this point we know the proposed invariant will always hold...

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant: a != NULL &&

0 <= i && i < n && n <= size(a) */
total += a[i];

return total;
}

… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
int total = 0;
for (size_t i=0; i<n; i++)
/* invariant: a != NULL &&

0 <= i && i < n && n <= size(a) */
total += a[i];

return total;
}

A more complicated loop might need us to use induction:
Base case: first entrance into loop.
Induction: show that postcondition of last statement of

loop plus loop test condition implies invariant.

Questions?

