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The Next Two Lectures...

• This Lecture: (Will be on MT1)

• MACs

• Message Authentication Codes: 

How to insure integrity with a shared secret

• Public Key Signatures

• How to insure integrity and authenticity using public key cryptography


• Next Lecture: (Will not be on MT1)

• "Random" Numbers

• Crypto-Fails

• Crypto Successes!
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Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded


• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping
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Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal 

$0100”.  Mallory intercepts corresponding C

• M = “Pay Mal $0100”.  C = “r4ZC#jj8qThMK”

• M10..13 = “0100”.  C10..13 = “ThMK”


• Mallory wants to replace some 
bits of C...
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Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding 
part of the message


• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13


• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message 

M with a message M' of equal length!
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Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that 
was originally sent


• Authentication: Bob can confirm that what he’s received was indeed generated 
by Alice


• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary


• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K


• Approach using public-key cryptography:

• “Digital signatures” provide both integrity & authentication together


• Key building block: cryptographically strong hash functions
 6
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Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y) 
• Since input size > output size, collisions do happen


• A cryptographically strong Hash(x) 
provides three properties:

• One-way: h = Hash(x) easy to compute, but not to 

invert.

• Intractable to find any x' s.t. Hash(x') = h,  

for a given h

• Also termed “preimage resistant”

 7

H(🐮) =



Computer Science 161 Spring 2019 Popa and Weaver

Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong 
Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)


• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it 

resists each 

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only 

≈ 2n/2 pairs

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x
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SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash 
algorithm, returning 256b or 384b hashes

• Works on blocks with a truncation routine to make it act on sequences of arbitrary 

length

• Rough security equivalent of AES-128 and AES-256 respectively


• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s) 
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable from H(s) 

and len(s)


• New SHA-3 standard (Keccak) does not have this property
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Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from Equifax...

• How can I as a reporter verify this?


• Idea:  If I can have the hacker select 10 random lines...

• All lines are properly and consistently formatted

• And in selecting them also say something about the size of the file...

• Voila!  Verify those lines and I now know he's not full of BS


• Can I use hashing to write a small script which the BlackHat Dude 
can run?

• Where I can easily verify that the 10 lines were sampled at random, and can't be 

faked?
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Sample a File

 11

#!/usr/bin/env python 
import hashlib, sys 
hashes = {} 

for line in sys.stdin: 
    line = line.strip() 
    for x in range(10): 
        tmp = "%s-%i" % (line, x) 
        hashval = hashlib.sha256(tmp) 
        h = hashval.digest() 
        if x not in hashes or hashes[x][0] > h: 
            hashes[x] = (h, hashval, tmp) 

for x in range(10): 
    h, hashval, val = hashes[x] 
    print "%s=\"%s\"" % (hashval.hexdigest(), val)
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Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far


• Since the hash appears random...

• Each iteration is an independent sample from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller


• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...


• And every potential fake line selected needs to check out when the reporter checks them!
 12



Computer Science 161 Spring 2019 Popa and Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K 


• Goal: when Bob receives a message, can confidently determine it hasn’t 
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)


• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required


• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted
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Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M* 
• … but doesn’t know shared secret key K


• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him


• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him


• These need to hold even if Mallory can observe many {Mi, Ti} pairs, 
including for Mi’s she chose
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The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash


• Reduce/expand the key to a  
single hash block


• XOR the key with the i_pad

• 0x363636... (one hash block long)


• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...


• Hash ((K ⊕ o_pad) || first hash)
 15

function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values to 

be different

• So for paranoia chose very different bit patterns


• Second hash prevents appending data

• Otherwise attacker could add more to the message 

and the HMAC and it would still be a valid HMAC for 
the key if the underlying hash is vulnerable to length 
extension attacks


• Wouldn't be a problem with the key at the end but at the 
start makes it easier to capture intermediate HMACs on 
partial files


• Is a Pseudo Random Function if the 
underlying hash is a PRF

• AKA if you can break this, you can break the hash!
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function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given 
HMAC(M,K) 

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!


• Its probably safe if you screw up and use the same key for 
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!
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Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk 

image when just a few files change


• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't


• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both
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AEAD Encryption Modes

• New Modern Encryption Modes: 
Authenticated Encryption with Additional Data


• These modes provide confidentiality and integrity

• Effectively including a MAC


• Can also provide integrity over additional unencrypted data

• Warning, however:

• These modes tend to include CTR mode as the base encryption mode... 

Which catastrophically fails if you ever reuse an IV

 19
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Passwords

• The password problem:

• User Alice authenticates herself with a password P


• How does the site verify later that Alice knows P?

• Classic:

• Just store {Alice, P} in a file...


• But what happens when the site is hacked?

• The attacker now knows Alice's password!


• Enter "Password Hashing"
 20
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Password Hashing

• Instead of storing {Alice, P}...

• Store {Alice, H(P)}


• To verify Alice, when she presents P

• Compute H(P) and compare it with the stored value


• Problem: Brute Force tables...

• Most people chose bad passwords... 

And these passwords are known

• Bad guy has a huge file...

• H(P1), P1 

H(P2), P2 
H(P3), P3...


• Ways to make this more efficient ("Rainbow Tables")
 21
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A Sprinkle of Salt...

• Instead of storing {Alice, H(P)}, also have a user-specific 
string, the "Salt"

• Now store {Alice, Salt, H(P||Salt)}

• The salt ideally should be both long and random, but it isn't considered "secret"


• As long as the salt is unique...

• An attacker who captures the password file has to brute force Alice's 

password on its own


• Its still an "off-line attack" (Attacker can do all the 
computation he wants) but...

• At least the attacker can't precompute possible solutions

 22
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Slower Hashes...

• Most cryptographic hashes are designed to be fast

• After all, that is the point: they should not only turn H(🐮) to hamburger... 

they do it with the speed of a woodchipper


• But for password hashes, we want it to be slow!

• Its OK if it takes a good fraction of a second to check a password

• Since you only need to do it once for each legitimate usage of that password

• But the attacker needs to do it for each password he wants to try


• Slower hashes don't change the asymptotic difficulty of 
password cracking but can have huge practical impact

• Slow rate by a factor of 10,000 or more!
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PBKDF2

• "Password Based Key Derivation 
Function 2"

• Designed to produce a long "random" bitstream 

derived from the password


• Used for both a password hash and 
to generate keys derived from a user's 
password

• PKBDF(PRF, P, S, c, len):

• PRF == Pseudo Random Function  

(e.g. HMAC-SHA256)

• P == Password

• S == Salt

• c == Iteration count

• len == Number of bits/bytes requested

• DK == Derived Key

 24

PKBDF(PRF,P,S,c,len){ 
  DK = "" 
  for i = 1,range(len/blocksize)+1){ 
    DK = DK || F(PRF,P,S,c,i) 
  } 
  return DK[0:len] 
} 

F(PRF,P,S,c,i){ 
  UR = U = PRF(P, S||INT_32(i)) 
  for j = 2; j <= c; ++j { 
    U = PRF(P, U) 
    UR = UR ^ U 
  } 
  return UR 
}
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Comments on PBKDF2

• Allows you to get effectively an arbitrary long string from a 
password

• Assuming the user's password is strong/high entropy


• Very good for getting a bunch of symmetric keys from a 
single password

• You can also use this to seed a pRNG for generating a "random" public/

private key pair


• Designed to be slow in computation...

• But it does not require a lot of memory: 

Other functions are also expensive in memory as well, e.g. scrypt and argon2
 25



Computer Science 161 Spring 2019 Popa and Weaver

Passwords...

• If an attacker can do an offline attack, your password must be 
really good

• Attacker simply tries a huge number of passwords in parallel using a GPU-based 

computer

• So you need a high entropy password:

• Even xkcd-style is only 10b/word, so need a 7 or more random word passphrase to resist a 

determined attacker


• Life is far better is if the attacker can only do 
online attacks:

• Query the device and see if it works

• Now limited to a few tries per second and 

no parallelism!
 26
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... and iPhones

• Apple's security philosophy:

• In your hands, the phone should be everything

• In anybody else's, it should (ideally) be an inert "brick"


• Apple uses a small co-processor in the phone to handle the cryptography

• The "Secure Enclave"


• The rest of the phone is untrusted

• Notably the memory:  All data must be encrypted: 

The CPU requests that the Secure Enclave unencrypt data and some data (e.g., your credit card 
for ApplePay) is only readable by the Secure Enclave


• They also have an ability to effectively erase a small piece of memory

• "Effaceable Storage": this takes a good amount of EE trickery

 27
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Crypto and the iPhone Filesystem

• A lot of keys encrypted by keys...

• But there is a random master key, kphone, that is the root of all the other keys


• Need to store kphone encrypted by the user's password in the flash memory

• PBKDF2(P,...) = kuser


• But how to prevent an off-line brute-force attack?

• Also have a 256b random secret burned into the Secure Enclave

• Need to take apart the chip to get this!


• Now the user key is not just a function of P, but P||secret

• Without the secret, can not do an offline attack


• All online attacks have to go through the secure enclave

• After 5 tries, starts to slow down

• After 10 tries, can (optionally) nuke kphone!

• Erase just that part of memory -> effectively erases the entire phone!
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Backups...

• Of course there is a necessary weakness:

• Backing up the phone copies all the data off in a form not encrypted using the in-chip 

secret

• After all, you need to be able to recover it onto a new phone!


• So someone who can get your phone...   
And can somehow managed to have it unlocked

• Thief, abusive boyfriend, cop...

• Hold it up to your face (iPhone X) or Fingerprint (5s or beyond)

• And then sync it with a new computer


• Change of policy for iOS-11:

• Now you also need to put in the passcode to trust a new computer: 

Can't create a backup without knowing the passcode
 29
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So Far...

• We have symmetric key encryption...

• But that requires Alice and Bob knowing a key in advance


• We have symmetric integrity with MACs...

• But anyone who can verify the integrity can also modify the message


• Goal of public key is to change that

• Allows creation of a symmetric key in the presence of an adversary

• Allows creation of a message to Alice by anybody but only Alice can decrypt

• Allows creation of a message exclusively by Alice than anybody can verify

 30
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Our Roadmap...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• RSA:

• Provide a message to a recipient only knowing the recipient's public key


• RSA signatures:

• Provide a message that anyone can prove was generated with a private key

 31
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Reminder: 
Diffie-Hellman Key Exchange
• What if instead they can somehow generate a random key when 

needed?

• Seems impossible in the presence of Eve observing all of their 

communication …

• How can they exchange a key without her learning it?


• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any 

meddling


• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then 

forget about it
 32
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Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice 

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it 

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random


• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy:  Alice and Bob don't retain any information 

that a later attacker who can compromise Alice or Bob's secrets could use to 
decrypt the messages exchanged with K.
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Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group Theory"

• Its actually done under a group G


• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)


• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

• But otherwise, its "add EC to the name" for something built on discrete log

 34
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But Its Not That Simple

• What if Alice and Bob aren't facing a passive eavesdropper

• But instead are facing Mallory, an active Man-in-the-Middle


• Mallory has the ability to change messages:

• Can remove messages and add his own


• Lets see...  Do you think DHE will still work as-is?

 35
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Attacking DHE

as a MitM

 36

Alice Bob

p, g

p, g

p, g
Mallory

What happens if instead of Eve 
watching, Alice & Bob face the 
threat of a hidden Mallory 
(MITM)?
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The MitM 
Key Exchange

 37

Alice Bob

p, g

p, g

p, g
Mallory

2. Alice picks random secret ‘a’: 1 < a < p-1 

3. Bob picks random secret ‘b’: 1 < b < p-1

a b

a? b?
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

4. Alice sends A = ga mod p to Bob

5. Mallory prevents Bob from 

receiving A

A = ga mod pA

A
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

6. Mallory generates her own a', b' 
7. Mallory sends A' = ga' mod p to 

Bob

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B’ = gb' mod pB'
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

9. Alice and Bob now compute keys they share with … 
Mallory! 

10.Mallory can relay encrypted traffic between the two ... 
10'. Modifying it or making stuff up however she wishes

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B' = gb' mod p
B'

K'1 = (B')a mod p 
      = (gb')a = gb'a mod p

K'2 = (A')b mod p 
      = (ga')b = ga'b mod p

K'1 = Ab' mod p = gab' mod p 
K'2 = Ba' mod p = gba' mod p
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Public Key Cryptography: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime


• Alice then computes n = p*q and φ(n) = (p-1)(q-1)  
• φ(n) is Euler's totient function, in this case for a composite of two primes


• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small


• Solve for d = e-1 mod φ(n) 
• You can't solve for d without knowing φ(n), which requires knowing p and q


• n, e are public, d, p, q, and φ(n) are secret
 43
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RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e, 

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.


• And factoring is believed to be hard to do


• Alice computes m = cd mod n = med mod n

• Time for some math magic...

 44
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RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n 
• Now recall that d is the multiplicative inverse of e, modulo φ(n), and 

thus: 
	e∙d = 1 mod φ(n)    (by definition) 
	e∙d - 1 = k∙φ(n)       for some k


• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n 
=[(Mφ(n))k]∙M mod n 
=(1k)∙M mod n           by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

 45(believed) Eve can recover M from C iff Eve can factor n=p∙q
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But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!


• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc


• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !


• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
 46
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RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R 

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G and H 
being functions of k rather than just fixed operations


• This is more than just block-cipher padding (which 
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be encrypted 

"random"


• The RSA mode we provide in the project uses this mode
 47
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In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a 
session key..


• And then encrypt the real message with the session key

• You never actually encrypt the message itself with the public key algorithm


• Why?

• Public key is slow...  Orders of magnitude slower than symmetric key

• Public key may cause weird effects:

• EG, El Gamal where an attacker can change the message to 2m...

• If m had meaning, this would be a problem

• But if it just changes the encryption and MAC keys, the main message won't decrypt

 48
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RSA Signatures... 
Just Run RSA Backwards!
• Alice computes a hash of the message H(m) 
• Alice then computes s = (H(m))d mod n


• Anyone can then verify 

• v = se mod m = ((H(m))d)e mod n = H(m) 

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")
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Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• How will be "next time"


• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)


• Only Bob can decrypt the message, and Bob can verify the 
message came from Alice


• So Mallory is SOL!
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Signatures Enable 
Ephemeral Diffie/Hellman
• Bob knows (somehow) Alice's public key...

• We will find out how later when we talk about certificates

• Or, as in the project, the "trusted keystore" can tell you Alice's public key


• Now Alice doesn't just send ga, but also sign(ga,Kalice) 
• As a consequence, now Mallory can't play the MitM!


• And yet we have "forward secrecy"

• Even if Eve gets Alice's private key, she can't decrypt old messages or new 

messages

• Even if Malory gets Alice's private key, he can only intercept new messages 

as a man-in-the-middle
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