
Web Security

CS 161: Computer Security

Prof. Raluca Ada Popa
March 19, 2019

Some content adapted from materials by David Wagner or Dan Boneh

The web architecture is a mess when
it comes to security

Announcements

• Homework 3 due Friday,
• Project 1 and 2 grades released

What is the Web?
A platform for deploying applications and sharing information,
portably and securely

client browser web server

HTTP
(Hypertext Transfer Protocol)

A common data communication protocol on the web

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

URLs

Example:
http://safebank.com:81/account?id=10#statement

Protocol Hostname

Port Path

Query
Fragment

Global identifiers of network-retrievable resources

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap,
image/jpeg, */*

Accept-Language: en
Connection: Keep-Alive
User-Agent: Chrome/21.0.1180.75 (Macintosh;
Intel Mac OS X 10_7_4)
Host: www.safebank.com
Referer: http://www.google.com?q=dingbats

HTTP Request
Method Path HTTP version Headers

Data – none for GET
Blank line

GET: no
side effect
POST:
possible
side effect

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

HTTP Response

HTTP/1.0 200 OK
Date: Sun, 12 Aug 2012 02:20:42 GMT
Server: Microsoft-Internet-Information-
Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT

Set-Cookie: …
Content-Length: 2543

<HTML> This is web content formatted using
html </HTML>

HTTP version Status code Reason phrase
Headers

Data

Can be a webpage

Web page

web page

HTML

CSS

Javascript

HTML
A language to create structured documents
One can embed images, objects, or create interactive forms

index.html
<html>

<body>
<div>

foo
Go to Google!

</div>
<form>

<input type="text” />
<input type=”radio” />
<input type=”checkbox” />

</form>
</body>

</html>

CSS (Cascading Style Sheets)
Style sheet language used for describing the presentation of a
document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;
}
p.sansserif {
font-family: Arial, Helvetica, sans-serif;
}

Javascript

Programming language used to manipulate
web pages. It is a high-level, untyped and
interpreted language with support for objects.

Supported by all web browsers
<script>
function myFunction() {
document.getElementById("demo").innerHTML = ”Text changed.";
}
</script>

Very powerful!

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

webpage

Page rendering

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to
the DOM

Painter
bitmap

DOM (Document Object Model)
a cross-platform model for representing and interacting with objects
in HTML

|-> Document
|-> Element (<html>)
|-> Element (<body>)
|-> Element (<div>)
|-> text node

|-> Form
|-> Text-box
|-> Radio Button
|-> Check Box

DOM Tree
HTML
<html>

<body>
<div>

foo
</div>
<form>

<input type="text” />
<input type=”radio” />
<input type=”checkbox” />

</form>
</body>

</html>

Web & HTTP 101

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

The power of Javascript

Get familiarized with it so that you can
think of all the attacks one can do with it

What can you do with Javascript?

Almost anything you want to the DOM!

A JS script embedded on a page can modify in
almost arbitrary ways the DOM of the page.
The same happens if an attacker manages to
get you load a script into your page.

w3schools.com has nice interactive tutorials:
https://www.w3schools.com/w3css/tryit.asp

Example of what Javascript
can do…

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"
onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">

Click Me!</button>

Can change HTML content:

DEMO from w3schools.com

Other examples

Can change images
Can chance style of elements
Can hide elements
Can unhide elements
Can change cursor

Other example: can access
cookies

Will learn later that cookies are useful for
authentication.
JS can read cookie:
var x = document.cookie;

Change cookie with JS:
document.cookie = "username=John Smith; expires=Thu,
18 Dec 2013 12:00:00 UTC; path=/";

Frames

Frames

• Enable embedding a page within a
page

<iframe src="URL"></iframe>

src = google.com/…
name = awglogin

outer page

inner page

Frames

• Modularity
– Brings together content from multiple sources
– Client-side aggregation

• Delegation
– Frame can draw only on its own rectangle

Slide from Dan Boneh

src = 7.gmodules.com/...
name = remote_iframe_7

Frames

• Outer page can specify only sizing
and placement of the frame in the
outer page
• demo

• Frame isolation: Our page cannot
change contents of inner page, inner
page cannot change contents of outer
page

Web security

A historical perspective
• The web is an example of “bolt-on security”
• Originally, the web was invented to allow

physicists to share their research papers
– Only textual web pages + links to other pages;

no security model to speak of

The web became complex
and adversarial quickly

• Then we added embedded images
– Crucial decision: a page can embed images loaded

from another web server
• Then, Javascript, dynamic HTML, AJAX, CSS,

frames, audio, video, …
• Today, a web site is a distributed application
• Attackers have various motivations

Web security is a challenge!

Desirable security goals
• Integrity: malicious web sites should not be

able to tamper with integrity of my computer or
my information on other web sites

• Confidentiality: malicious web sites should not
be able to learn confidential information from
my computer or other web sites

• Privacy: malicious web sites should not be
able to spy on me or my activities online

• Availability: attacker cannot make site
unavailable

Security on the web
• Risk #1: we don’t want a malicious site to be

able to trash my files/programs on my computer
– Browsing to awesomevids.com (or evil.com)

should not infect my computer with malware, read or
write files on my computer, etc.

Security on the web
• Risk #1: we don’t want a malicious site to be

able to trash my files/programs on my computer
– Browsing to awesomevids.com (or evil.com)

should not infect my computer with malware, read or
write files on my computer, etc.

• Defense: Javascript is sandboxed;
try to avoid security bugs in browser code;
privilege separation; automatic updates; etc.

Security on the web
• Risk #2: we don’t want a malicious site to be

able to spy on or tamper with my information or
interactions with other websites
– Browsing to evil.com should not let evil.com spy

on my emails in Gmail or buy stuff with my Amazon
account

Security on the web
• Risk #2: we don’t want a malicious site to be

able to spy on or tamper with my information or
interactions with other websites
– Browsing to evil.com should not let evil.com spy

on my emails in Gmail or buy stuff with my Amazon
account

• Defense: the same-origin policy
– A security policy grafted on after-the-fact, and

enforced by web browsers

Security on the web
• Risk #3: we want data stored on a web server

to be protected from unauthorized access

Security on the web
• Risk #3: we want data stored on a web server

to be protected from unauthorized access
• Defense: server-side security

Same-origin policy

Same-origin policy
• Each site in the browser is isolated from all others

wikipedia.org

mozilla.org

browser:

security
barrier

Same-origin policy
• Multiple pages from the same site are not isolated

wikipedia.org

wikipedia.org

browser:

No security
barrier

Origin
• Granularity of protection for same origin policy
• Origin = (protocol, hostname, port)

• It is string matching! If these match, it is same
origin, else it is not. Even though in some
cases, it is logically the same origin, if there is
no match, it is not

http://coolsite.com:81/tools/info.html

protocol hostname port

Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript on one page cannot read or
modify pages from different origins

• The origin of a page is derived from the URL it
was loaded from

Same-origin policy

http://en.wikipedia.org

http://upload.wikimedia.org

• The origin of a page is derived from the URL it
was loaded from

• Special case: Javascript runs with the origin of
the page that loaded it

Same-origin policy

http://en.wikipedia.org

http://www.google-analytics.com

Origins of other components

• the image is “copied”
from the remote server into the new
page so it has the origin of the
embedding page (like JS) and not of the
remote origin

• iframe: origin of the URL from which the
iframe is served, and not the loading
website.

Exercises
Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

except !!!

Random fact about … Scott Shenker

Bio on EECS website: “Scott Shenker spent his academic youth
studying theoretical physics but soon gave up chaos theory for
computer science. Continuing to display a remarkably short
attention span, his research over the years has wandered […].
Unable to focus on any single topic, his current research projects
include software-defined networking, […]. Unable to hold a
steady job, he currently splits his time between the UC Berkeley
Computer Science Division and the ICSI.”

Bio according to me: A legend in computer networking

Bio from him: “I have never taken a CS course in my life, and I don’t
program.”
If you want to how he succeeded … attend next lecture

