
Web Security: Injection attacks

CS 161: Computer Security

Prof. Raluca Ada Popa
March 21, 2019

Some content adapted from materials by David Wagner or Dan Boneh

Last time: Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript in one origin cannot read or
modify pages from different origins

Origin
• Granularity of protection for same origin policy
• Origin = (protocol, hostname, port)

• It is string matching! If these match, it is same
origin, else it is not. Even though in some
cases, it is logically the same origin, if there is
no match, it is not

http://coolsite.com:81/tools/info.html

protocol hostname port

Cross-origin communication

• Allowed through a narrow API:
postMessage

• Receiving origin decides if to accept the
message based on origin (whose
correctness is enforced by browser)

postMessage
(“run this
script”,
script)

Check origin, and request!

Web security attacks

What can go bad if a web server is compromised?

• Steal sensitive data (e.g., data from many users)

• Change server data (e.g., affect users)

• Gateway to enabling attacks on clients

• Impersonation (of users to servers, or vice versa)

• Others
7

A set of common attacks

• SQL Injection
– Browser sends malicious input to server
– Bad input checking leads to malicious SQL query

• XSS – Cross-site scripting
– Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers
• CSRF – Cross-site request forgery

– Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

8

SQL injection attacks

9

Historical perspective

• The first public discussions of SQL
injection started appearing around 1998

10

In the Phrack magazine

First published in 1985

phreak +
hack

Hundreds of proposed fixes and solutions

Top web vulnerabilities

11
Please don’t repeat common mistakes!!

!!!

• Attacker user provides bad input

• Web server does not check input format

• Enables attacker to execute arbitrary code
on the server

General code injection attacks

Example:
code injection based on eval (PHP)

• $_GET[‘A’]: gets the input with name A from a
GET HTTP request
• $_POST[‘B’]: gets the input with name B from
a POST HTTP request

13

1. User visits calculator web app in user browser and
writes 3+5 ENTER
2. User’s browser sends HTTP GET request
http://site.com/calc.php?exp=“ 3+5”
3. Script at server receives http request and runs
$_GET(“exp”) =“ 3+5”

Example:
code injection based on eval (PHP)

• the web server uses eval to evaluate a string
as code

• e.g. eval(‘$result = 3+5’) produces 8

14

$exp = $_GET[‘exp'];
eval(’$result = ' . $exp . ';');

calculator:
http://site.com/calc.php

Attack: http://site.com/calc.php?exp=“ 3+5 ;
system(‘rm *.*’)”

http://site.com/calc.php?exp
=“ 3+5”

Code injection using system()

• Example: PHP server-side code for sending
email

• Attacker can post

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=“foo < /usr/passwd; ls”

SQL injection

16

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Browser

Database
server

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Databases

• Structured collection of data

– Often storing tuples/rows of related values

– Organized in tables

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

… … …

• Widely used by web services to store server
and user information

• Database runs as separate process to which
web server connects
– Web server sends queries or commands

derived from incoming HTTP request
– Database server returns associated values

or modifies/updates values

Databases

SQL
• Widely used database query language

– (Pronounced “ess-cue-ell” or “sequel”)

• Fetch a set of rows:

SELECT column FROM table WHERE condition
returns the value(s) of the given column in the specified
table, for all records where condition is true.

• e.g:

SELECT Balance FROM Customer
WHERE Username='bgates'
will return the value 79.2

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL (cont.)

• Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski', 10.00);

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

8477 oski 10.00

… … …

SQL (cont.)
• Can delete entire tables:

DROP TABLE Customer

• Issue multiple commands, separated by
semicolon:
INSERT INTO Customer VALUES (4433, 'vladimir',
70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir'

returns 4433.

SQL Injection Scenario

• Suppose web server runs the following code:

• Server stores URL parameter “recipient” in variable
$recipient and then builds up a SQL query

• Query returns recipient’s account number
• Server will send value of $sql variable to database

server to get account #s from database

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";

$rs = $db->executeQuery($sql);

SQL Injection Scenario

• Suppose web server runs the following code:

• So for HTTP request“?recipient=Bob” the SQL
query is:
"SELECT AcctNum FROM Customer WHERE

Username='Bob' "

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";

$rs = $db->executeQuery($sql);

Basic picture: SQL Injection
Victim Web Server

SQL DB

Attacker

post
malic

ious
form

unintended
SQL queryreceive valuable

data

1

2

3

$reci
pient

speci
fied

by

attac
ker

How can $recipient cause
trouble here?

Problem

Untrusted user input ‘recipient’ is embedded
directly into SQL command
Attack:
$recipient = alice’; SELECT * FROM Customer;’

$recipient = $_POST[‘recipient’];

$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";

$rs = $db->executeQuery($sql);

Returns the entire contents of
the Customer!

30

CardSystems Attack

• CardSystems
– credit card payment processing company
– SQL injection attack in June 2005
– put out of business

• The Attack
– 263,000 credit card #s stolen from

database
– credit card #s stored unencrypted
– 43 million credit card #s exposed

32

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) &

" '
AND pwd=' " & form(“pwd”) & “ '”

);

if not ok.EOF
login success

else fail;

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal
Query

(1 row)

34

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) &

" '
AND pwd=' " & form(“pwd”) & “ '”

);

if not ok.EOF
login success

else fail;

Is this exploitable?

• Suppose user = “ ' or 1=1 -- ” (URL encoded)

• Then scripts does:
ok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

– The “--” causes rest of line to be ignored.

– Now ok.EOF is always false and login succeeds.

• The bad news: easy login to many sites this way.

Bad input

Besides logging in, what else can attacker do?

• Suppose user =
“ ′ ; DROP TABLE Users -- ”

• Then script does:

ok = execute(SELECT …
WHERE user= ′ ′ ; DROP TABLE Users
…)

36

Even worse: delete all data!

What else can an attacker do?
• Add query to create another account with

password, or reset a password
Suppose user =

“ ′ ; INSERT INTO TABLE Users (‘attacker’,
‘attacker secret’); -- ”

And pretty much everything that can be done by
running a query on the DB!

How to prevent SQL injection?

• Ideas?

SQL Injection Prevention
• Sanitizate user input: check or enforce

that value/string that does not have
commands of any sort

Disallow special characters, or
Escape input string

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;’

How to escape input

Web
Server DB

query

You “escape” the SQL parser

Parser
commands

How to escape input

• The input string should be interpreted
as a string and not as a special
character

• To escape the SQL parser, use
backslash in front of special characters,
such as quotes or backslashes

The SQL Parser does…
If it sees ’ it considers a string is starting or ending
If it sees \’ it considers it just as a character part of a
string and converts it to ‘

The username will be matched against
alice’; SELECT * FROM People;’ and no match will
be found

Different parsers have different escape sequences or
API for escaping

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;\’

For

Examples
• What is the string username compared to (after SQL

parsing), and when does it flag a syntax error?
(syntax error appears at least when quotes are not
closed)

[..] WHERE Username=’alice’; alice

[..] WHERE Username=’alice\’;

[..] WHERE Username=’alice\’’;

[..] WHERE Username=’alice\\’;
because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not
closed

SQL Injection Prevention
• Avoid building a SQL command based on raw user

input, use existing tools or frameworks
• E.g. (1): the Django web framework has built in

sanitization and protection for other common
vulnerabilities
– Django defines a query abstraction layer which

sits atop SQL and allows applications to avoid
writing raw SQL

– The execute function takes a sql query and
replaces inputs with escaped values

• E.g. (2): Or use parameterized/prepared SQL

45

Parameterized/prepared SQL
• Builds SQL queries by properly escaping args: ′ ® \′

• Example: Parameterized SQL: (ASP.NET 1.1)
– Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

How to prevent general injections

• Sanitize input from the user!
• Use frameworks/tools that already check user

input

Similarly to SQL injections:

47

Summary
• Injection attacks were and are the most common

web vulnerability

• It is typically due to malicious input supplied by
an attacker that is passed without checking into a
command; the input contains commands or alters
the command

• Can be prevented by sanitizing user input

Random fact 2 about … Scott Shenker

Recall random fact 1: “I have never taken a CS course
in my life, and I don’t program.”

What is Scott’s key to success?
“About 30% of my diet is chocolate.
No other food matters to me.”

Scott Shenker

