
David Wagner CS 161
Computer Security Notes

Principles for Building Secure Systems

In this set of notes we look at some general principles for secure system design.1 These ideas
also allow us to examine existing systems to understand their security properties.

Security is economics.

No system is completely, 100% secure against all attacks. Rather, systems may only need to
resist a certain level of attack. There is no point buying a $10,000 firewall to protect $1,000
worth of trade secrets.

Also, it is often helpful to quantify the level of effort that an attacker would need to expend
to break the system. Adi Shamir once wrote, “There are no secure systems, only degrees
of insecurity.” A lot of the science of computer security comes in measuring the degree of
insecurity.

Analogy: Safes come with a rating of their level of security. For instance, a consumer-grade
safe might indicate that it will resist attack for up to 5 minutes by anyone without tools. A
high-end safe might be rated TL-30: it is secure against a burglar with safecracking tools and
limited to 30 minutes access to the safe. (With such a safe, we know that we need to hire
security guards who are able to respond to any intrusion within 30 minutes.)

A corollary of this principle is you should focus your energy on securing the weakest links.
Security is like a chain: a system is only as secure as the weakest link. Attackers follow the
path of least resistance, and they will attack the system at its weakest point. There is no
sense putting an expensive high-end deadbolt on a screen door; attackers aren’t going to
bother trying to pick the lock when they can just rip out the screen and step through.

Least privilege.

Give a program the set of access privileges that it legitimately needs to do its job—but nothing
more. Try to minimize how much privilege you give each program and system component.

Least privilege is an enormously powerful approach. It doesn’t reduce the probability of
failure, but it can reduce the expected cost of failures. The less privilege that a program has,

1Many of these principles are due to Saltzer and Schroeder, who wrote a classic paper in the 1970s with
advice on this topic.

Lecture Notes by David Wagner 1 of 6

the less harm it can do if it goes awry or becomes subverted.2

For instance, the principle of least privilege can help reduce the damage caused by buffer
overruns. If a program is compromised by a buffer overrun attack, then it will probably be
completely taken over by an intruder, and the intruder will gain all the privileges the program
had. Thus, the fewer privileges that a program has, the less harm is done if it should someday
be penetrated by a buffer overrun attack.

Example: How does Unix do, in terms of least privilege? Answer: Pretty lousy. Every program
gets all the privileges of the user that invokes it. For instance, if I run a editor to edit a single
file, the editor receives all the privileges of my user account, including the powers to read,
modify, or delete all my files. That’s much more than is needed; strictly speaking, the editor
probably only needs access to the file being edited to get the job done.

Example: How is Windows, in terms of least privilege? Answer: Just as lousy. Arguably worse,
because many users run under an Administrator account, and many Windows programs
require that you be Administrator to run them. In this case, every program receives total
power over the whole computer. Folks on the Microsoft security team have recognized the
risks inherent in this, and have taken many steps to warn people away from running with
Administrator privileges, so things have gotten better in this respect.

Use fail-safe defaults.

Use default-deny polices. Start by denying all access, then allow only that which has been
explicitly permitted. Ensure that if the security mechanisms fail or crash, they will default to
secure behavior, not to insecure behavior.

Example: the way that firewalls work, they must explicitly decide to forward a given packet
or else the packet is lost (dropped). If a firewall suffers a failure, no packets will be forwarded.
Thus, a firewall fails safe. This is good for security. It would be much more dangerous if it
had fail-open behavior, since then all an attacker would need to do is wait for the firewall to
crash (or induce a crash) and then the fort is wide open.

Separation of responsibility.

Split up privilege, so no one person or program has complete power. Require more than one
party to approve before access is granted.

Examples: In a nuclear missile silo, two launch officers must agree before the missile can be
launched.

Example: In a movie theater, you pay the teller and get a ticket stub; then when you enter
the movie theater, a separate employee tears your ticket in half and collects one half of it,

2 There are many real-world analogies to this principle. For example, we don’t require exam proctors to
carry sidearms when a notepad or a camera will suffice.

Lecture Notes by David Wagner 2 of 6

putting it into a lockbox. Why bother giving you a ticket that 10 feet later is going to be
collected from you? One answer is that this helps prevent insider fraud. Tellers are low-paid
employees, and they might be tempted to under-charge a friend, or to over-charge a stranger
and pocket the difference. The presence of two employees helps keep them both honest, since
at the end of the day, the manager can reconcile the number of ticket stubs collected against
the amount of cash collected and detect some common shenanigans.

Example: In many companies, purchases over a certain amount must be approved both by
the requesting employee and by a separate purchasing office. This control helps prevent fraud,
since it is less likely that both will collude and since it is unlikely that the purchasing office
will have any conflict of interest in the choice of vendor.

Defense in depth.

This is a closely related principle. There’s a saying that you can recognize a security guru who
is particularly cautious if you see someone wearing both a belt and a set of suspenders. (What
better way to avoid getting caught with your trousers around your ankles?) The principle is
that if you use multiple redundant protections, then all of them would need to be breached
before the system’s security will be endangered.

Psychological acceptability.

It is important that your users buy into the security model.

Example: Suppose the company firewall administrator gains a reputation for capriciously, for
no good reason, blocking applications that the engineers need to use to get their job done.
Pretty soon, the engineers are going to view the firewall as damage and route around it,
maybe setting up tunnels, or bypassing it in any number of other ways. This is not a game
that the firewall administartor is going to win. No system can remain secure for long when
its users actively seek to subvert it.

Example: The system administrator issues an edict that, henceforth, all passwords will be
automatically generated unmemorizable strings that are at least 17 characters long, and must
be changed once a month. What’s likely to happen is that users will simply write down their
password on a yellow sticky attached to their monitor, visible to anyone who looks. Such
well-intentioned edicts can ultimately turn out to be counter-productive.

Human factors matter.

A closely related topic: Security systems must be usable by ordinary people, and must be
designed to take into account the role humans will play.

Example: Your web browser pops up security warnings all the time, with vague alarming
warnings but no clear indication of what steps you can take and no guidance on how to

Lecture Notes by David Wagner 3 of 6

handle the risk. What are you going to do? If you’re like most of the user population, you’re
soon going to learn to always click “Ok” any time a security dialogue box pops up.

Example: The NSA’s cryptographic equipment stores its key material on a small physical
token. This token is built in the shape of an ordinary door key. To activate an encryption
device, you insert the key into a slot on the device and turn the key. This interface is
intuitively understandable, even for 18-year-olds soldiers out in the field with minimal training
in cryptography.

Ensure complete mediation.

When enforcing access control policies, make sure that you check every access to every object.
(See the associated notes on Design Patterns for Building Secure Systems for a discussion of
reference monitors, a general conceptual approach to ensuring complete mediation.)

Caching is a slightly sticky subject. In some cases, you can get away with not checking every
access and allowing security decisions to be cached, but beware. If the context relevant to
the security decision changes, and the cache entry isn’t invalidated, then someone might get
away with accessing something they shouldn’t.

Know your threat model.

Be careful with old code. The assumptions originally made might no longer be valid. The
threat model may have changed.

Example: In the early days, the Internet was populated only by researchers, who mostly
trusted each other. Many networking protocols designed during those days made assumptions
that all other network participants were benign and would not try to harm others. Of course,
today the Internet is populated by millions of users, who do not always have such benign
intent; consequently, many network protocols designed long ago are now suffering under the
strain of attack. Spam is one well-known example of this syndrome.

Detect if you can’t prevent.

If you can’t prevent break-ins, at least detect them (and, where possible, provide a way to
recover or to identify the perpetrator). Save audit logs so that you have some way to analyze
break-ins after the fact.

Example: FIPS 140-1 sets out a federal standard on tamper-resistant hardware. Type III
devices—the highest level of security in the standard—are intended to be tamper-resistant.
However, Type III devices are very expensive. Type II devices are only required to be
tamper-evident, so that if someone tampers with them, this will be visible (e.g., a seal will be
visibly broken). This means they can be built more cheaply and used in a broader array of
applications.

Lecture Notes by David Wagner 4 of 6

Don’t rely on security through obscurity.

The phrase ‘security through obscurity’ has come to be understood to refer to systems that
rely on the secrecy of their design, algorithms, or source code to be secure.3 The problem
with this is that it is brittle: it often proves very hard to keep the design of the system
secret from a sufficiently motivated adversary. For instance, every running installation is
going to have binary executable code, and it is tedious but not all that difficult to disassemble
and reverse-engineer such code. Also problematic is that it is very difficult to assess, with
any confidence, the chances that the secret will leak or the difficulty of learning the secret.
Moreover, it’s disastrous if this secret ever leaks: it is often hard to update widely-deployed
systems, so there may be no recourse if someone ever succeeds in reverse-engineering the
code. Historically, security through obscurity has a lousy track record: many systems that
have relied upon the secrecy of their code or design for security have failed miserably.

This doesn’t mean that open-source applications are necessarily more secure than closed-
source applications. But it does mean that you shouldn’t trust any system that relies on
security through obscurity, and you should probably be skeptical about claims that keeping
the source code secret makes the system significantly more secure.

Design security in from the start.

Trying to retrofit security to an existing application after it has already been spec’ed, designed,
and implemented is usually a very difficult proposition. At that point, you’re stuck with
whatever architecture has been chosen, and you don’t have the option of decomposing the
system in a way that ensures least privilege, separation of privilege, complete mediation,
defense in depth, and other good properties. Backwards compatibility is often particularly
painful, because you can be stuck with supporting the worst insecurities of all previous
versions of the software.

Finally, let’s examine three principles that are widely accepted in the cryptographic community
(although not often articulated) that can play a useful role in considering computer system
security as well.

Conservative design.

Systems should be evaluated according to the worst security failure that is at all plausible,
under assumptions favorable to the attacker. If there is any plausible circumstance under
which the system can be rendered insecure, then it is prudent to consider seeking a more
secure system. Clearly, however, we must balance this against Security is economics: that

3One might hear reasoning like: “this system is so obscure, only 100 people around the world understand
anything about it, so what are the odds that an adversary will bother attacking it?” One problem with such
reasoning is that such an approach is self-defeating. As the system becomes more popular, there will be more
incentive to attack it, and then we cannot rely on its obscurity to keep attackers away.

Lecture Notes by David Wagner 5 of 6

is, we must decide the degree to which our threat model indicates we indeed should spend
resources addressing the given scenario.

Kerkhoff’s principle.

Cryptosystems should remain secure even when the attacker knows all internal details of
the system.4 The key should be the only thing that must be kept secret, and the system
should be designed to make it easy to change keys that are leaked (or suspected to be leaked).
If your secrets are leaked, it is usually a lot easier to change the key than to replace every
instance of the running software. (This principle is closely related to Don’t rely on security
through obscurity.)

Proactively study attacks.

We should devote considerable effort to trying to break our own systems; this is how we gain
confidence in their security. Also, because security is a game where the attacker gets the last
move, and where it can be very costly if a security hole is discovered after a system is widely
deployed, it pays to try to identify attacks before the bad guys find them, so that we have
some lead time to close the security holes before they are exploited in the wild.

4 We’ll discuss the notions of cryptography and cryptosystems more in subsequent lectures.

Lecture Notes by David Wagner 6 of 6

