
Popa & Weaver
Spring 2019

CS 161
Computer Security Project 2

An End-to-End Encrypted File Sharing System

Author(s): You
This is the instruction version 7.
This version will be distributed by the end of Monday Mar 03, incorporating what happens in the OHs.

Update: In version 7, we reveal the code coverage needed for full credit for coverage test: 80%. Please take
a look at §3 for more information about code coverage.

Update: In version 6, we added a new requirement that �lenames must be hidden (but the length can be
exposed). See security guarantees (§4) and StoreFile (§4.3) for more information, and we clari�ed that we
assume user passwords have su�cient entropy in InitUser (§4.1).

Update: In version 4, we changed the speci�cation of RevokeFile (§5.3). We need to recreate the �le with
the same data, and we only assume the owner of the �le will call this function.

Abstract: We want you to design and implement a �le sharing system (e.g., Dropbox) that protects user
privacy. In particular, user �les are always encrypted and authenticated on the server. In addition, users can
share �les with each other. These are basic functionalities for �le sharing.

That being said, such an end-to-end encrypted �le sharing system won’t be easy. We urge you to start this
project as early as possible.

Even with the help of a sample solution, two TAs spent 12 days to �nish this system, believe it or not!

Logistics:

⋄ Team size: Up to two students.

⋄ Due date: March 11 2019, 11:59 pm.

Roadmap:

⋄ Setup:

� Form a team.

� Environment setup (§1).

� Golang Tutorial.

� Golang Quiz (§1.1).

� Download the skeleton code (§1.2).

Page 1 of 21

� Review the autograder rule (§1.3).

⋄ API Warmup:

� UUID (§2.1)

� Datastore API (§2.2).

� Keystore API (§2.3).

� Cryptography functions (§2.4).

⋄ Preparation:

� Recommended practice (§3).

� Skim the design document requirement (§6).

⋄ Part 1:

� InitUser (§4.1) and GetUser (§4.2).

� LoadFile (§4.4) and StoreFile (§4.3).

� AppendFile (§4.5).

� Surprise break (§4.6).

⋄ Part 2:

� ShareFile (§5.1) and ReceiveFile (§5.2).

� RevokeFile (§5.3).

⋄ Wrap up the submission:

� Design document (§6).

� Submission (§7).

Project 2 Page 2 of 21 CS 161 – SP 19

1 Environment Setup

The setup consists of �ve steps.

� Install Golang (link).

� Complete the online Golang Tutorial (link).

� Complete the Golang Quizzes (§1.1).

� Download the skeleton code (§1.2).

� Review the autograder rule (§1.3).

1.1 Golang quizzes

The following �ve questions will help you refresh the Golang Tutorial.

Quiz one: What does the “:=” mean in “x := 5”?

Quiz two: If an identi�er in Golang starts with a non-capitalized letter, will this identi�er be exported i.e.,
accessible from outside this package?

Quiz three: How is a string converted into a byte slice?

Quiz four: How is the user structure converted into a byte slice? How is it recovered back from the byte
slice?

Quiz �ve: Which website provides detailed documents for many Golang libraries?

Project 2 Page 3 of 21 CS 161 – SP 19

https://golang.org/doc/install
https://tour.golang.org/welcome/1

1.2 Skeleton code

Skeleton code. You will be using the following template for this project:

https://inst.eecs.berkeley.edu/~cs161/sp19/proj2.tar

All of your code should go to proj2.go and proj2_test.go.

• proj2.go
Where you will write your implementation.

• proj2_test.go
Where you will write the tests. You must add tests to this �le. The autograder will check the com-
pleteness of your test suite.

User library. You can access some useful functions in userlib.go, which you need to fetch with:

go get -u github.com/nweaver/cs161-p2/...

You can get familiar with these functions by reading §2, or by reading the source code:

https://github.com/nweaver/cs161-p2/

1.3 Autograder rule

Rule 1: No adversarial behavior. Your submission will be executed by the autograder on a series of tests.
The autograder rejects any submission that imports new libraries or attempts anything similar to these:

• Spawn other processes.

• Read or write to the �le system.

• Create any network connections.

• Attack the autograder by returning long, long output.

Code will be run in an isolated sandbox. Any adversarial behavior will be seen as cheating.

Rule 2: No global variables. Do not use global variables in proj2.go. All the functions you write in
proj2.go must be stateless. That is to say, put data that needs permanent storage in the server stores,
Keystore (§2.3) or Datastore (§2.2).

Rule 3: Return nil as the error code if an operation succeeds. Return a value di�erent from nil
as the error code if an operation fails. Many functions in this library have an output error for the error
code. Please return nil if and only if there is no error. The autograder may decide whether the function is
successful depending on whether the function returns an nil as the error code.

Project 2 Page 4 of 21 CS 161 – SP 19

https://inst.eecs.berkeley.edu/~cs161/sp19/proj2.tar
https://github.com/nweaver/cs161-p2/

2 API

In this section we introduce some useful functions, including Google UUID (§2.1), Datastore (§2.2), Keystore
(§2.3), and a few cryptographic functions (§2.4).

2.1 Universally unique identi�er (UUID)

UUIDs are like unique names. As we will describe in §2.2, the Datastore requires us to use UUIDs as the key.

You will be using Google UUID library, the documentation of which can be found here. Below we outline
how to randomly generate a UUID and how to deterministically generate a UUID from a byte slice.

Random sampling a UUID. Suppose you want to obtain a random UUID, we write:

new_UUID := uuid.New()

Deterministic encoding to a UUID. To convert a byte slice with ≥ 16 bytes into a UUID, we write:

(new_UUID, _) := uuid.FromBytes(byte_slice[:16])

which only takes the �rst 16 bytes.

Warning: The encoding does not hide the information in the byte slice. That is to say, you should not pass a
con�dential secret key as the byte slice here and use the resulting UUID publicly; an attacker may �gure
out information about the secret key from that UUID.

2.2 Datastore: A store of encrypted data

You place encrypted �le data (and other metadata, as required by your design) on this server.

This server is untrusted, discussed in §4; thus, you must guarantee the con�dentiality and integrity of
any sensitive data or metadata you store on it.

You can use the following three API functions in userlib.

• DatastoreSet(key UUID, value []byte).

– Store value at key.

• DatastoreGet(key UUID) (value []byte, ok bool).

– Return the value stored at key.

– If the key does not exist, ok will be false.

• DatastoreDelete(key UUID).

– Delete that item from the data store.

Note that the storage server has one namespace and does not do access control, so anything written by one
user can be read or overwritten by any other user who knows the key. The client must ensure that their
own �les are not overwritten by other clients by using unique UUIDs that only this client knows.

Project 2 Page 5 of 21 CS 161 – SP 19

https://godoc.org/github.com/google/uuid

2.3 Keystore: A store of public keys

You place your keys to a trusted public key server, that allows us to post and get public keys. You may
need to post more than one key to the Keystore. There are two functions:

• KeystoreSet(key string, value PKEEncKey/DSVerifyKey) error.

– Set the entry for key to be value.

– Cannot modify an existing key-value entry, which will trigger an error.

• KeystoreGet(key string) (value PKEEncKey/DSVerifyKey, ok bool).

– Return the public key under the entry indexed by key.

– If the key does not exist, ok will be false.

You can assume no attacker will overwrite any entry you add to the Keystore.

2.4 Cryptography functions

There are some cryptographic functions you can use. Note that if you use external cryptography libraries
(or any other libraries), the autograder will refuse that and you will get a zero.

� I understand that I cannot use external cryptography libraries, or any other libraries.

� I understand that the autograder will refuse external libraries except those given in the skeleton
(which includes strconv).

2.4.1 Public key encryption (PKE)

Data types:

• PKEEncKey: The encryption key (or the public key) for a public-key encryption.

• PKEDecKey: The decryption key (or the private key) for a public-key encryption.

Functions:

• PKEKeyGen() (PKEEncKey, PKEDecKey, error).

– Generate a RSA key pair for public-key encryption.

• PKEEnc(ek PKEEncKey, plaintext []byte) ([]byte, error).

– Use the RSA public key to encrypt a message.

– Warning: It does not support very long plaintext. See here for a discussion.

• PKEDec(dk PKEDecKey, ciphertext []byte) ([]byte, error).

– Use the RSA private key to decrypt a message.

Project 2 Page 6 of 21 CS 161 – SP 19

https://golang.org/pkg/crypto/rsa/#EncryptOAEP

2.4.2 Digital signatures (DS)

Data type

• DSSignKey: The signing key (or the private key) for a digital signature scheme.

• DSVerifyKey: The verifying key (or the public key) for a digital signature scheme.

Functions:

• DSKeyGen() (DSSignKey, DSVerifyKey, error).

– Generate a RSA key pair for digital signatures.

• DSSign(sk DSSignKey, msg []byte) ([]byte, error).

– Use the RSA private key to create a signature.

• DSVerify(vk DSVerifyKey, msg []byte, sig []byte) error.

– Use the RSA public key to verify a signature.

2.4.3 Hash-based message authentication code (HMAC)

HMAC generates a MAC given a 128-bit symmetric key and the byte slice. If used properly, it can be used
to provide data integrity.

Functions:

• HMACEval(key []byte, msg []byte) ([]byte, error).

– Compute a SHA-512 HMAC of the message.

• HMACEqual(a []byte, b []byte) bool.

– Compare whether two MACs are the same. Although bytes.Equal has the same functionality,
the latter is not constant-time.

Warning: One key per purpose. If you use a key for symmetric encryption or HKDF, you should better not
use this key for HMAC.

2.4.4 Hash-based key derivation function (HKDF)

HMAC can also be used as a simple hash-based key derivation function. HKDF allows you to derive a 128-bit
symmetric key from a previous 128-bit symmetric key. If used properly, it can simplify key management.

Function:

• HMACEval(key []byte, msg []byte) ([]byte, error).

– You can use HMACEval and you additionally do a postprocessing step to take the �rst 16 bytes
of the output as the symmetric key.

Warning: One key per purpose. If you use a key for symmetric encryption or HMAC, you should better not
use this key for HKDF.

Project 2 Page 7 of 21 CS 161 – SP 19

2.4.5 Password hashing function

Password hashing functions, also known as password key derivation functions, are commonly used to
generate keys from passwords with some sort of entropy.

Function:

• Argon2Key(password []byte, salt []byte, keyLen uint32) []byte.

– Output some bytes that can be used for symmetric keys. The size of the output equals keyLen.

– Warning: You will need to use the salt in some way, so that even if the password is the same,
the result should be di�erent.

As the name implies, the password hashing function is the appropriate one to derive key from a password,
where the password may only have some middle level of entropies. You should not (and will not be able to)
use HKDF to derive a key from the password.

2.4.6 Symmetric encryption

Function:

• SymEnc(key []byte, iv []byte, plaintext []byte) []byte.

– Encrypt using the CTR mode the plaintext using the key and an IV and output the ciphertext.
The ciphertext will contain the IV, so you don’t need to store the IV separately.

• SymDec(key []byte, ciphertext []byte) []byte.

– Decrypt the ciphertext using the key.

Warning: One key per purpose. If you use a key for HKDF or HMAC, you should better not use this key for
symmetric encryption.

Warning: The encryption uses the CTR mode. You should better supply a random IV.

Warning: Encryption does not promise integrity.

2.4.7 Random byte generator

Function:

• RandomBytes(bytes int) (data []byte).

– Given a length of random bytes you want, return the random bytes.

– Can be used for IV or random keys.

Warning: If you use this function to generate random keys, you need to save them somewhere; otherwise,
you will be unable to get them back.

Project 2 Page 8 of 21 CS 161 – SP 19

2.4.8 Authenticated encryption

It will greatly simplify the design if you implement an authenticated encryption scheme here, which will be
using HMAC, HKDF, and symmetric encryption in an interesting way.

But userlib intentionally did not implement authenticated encryption, not even using a mode of operation
that simulatenously provides con�dentiality and integrity (e.g., GCM, OCB, EAX).

It is not required for us to write separate functions for authenticated encryption (and its decryption). But
it is strongly recommended. When you feel that the code to provide simultaneously con�dentially and
integrity is too lengthy, you may come back here and implement authenticated encryption.

Project 2 Page 9 of 21 CS 161 – SP 19

3 Design Security in From the Start

It is recommended to do three things iteratively.

Writing short sentences for the design document (DD).

• Create a Google document in Google Drive, shared with your teammate.

• Section 1 of the DD has been speci�ed in §6. Copy those questions to the Google document.

• As you are working on the project, try to write down the design choices you make in the DD.

• Use the comment/assignment feature of Google document to nudge your teammate to do something.

Harley Patton’s maxim: Come up with answers to questions for DD’s Section 1 before you begin coding.
Otherwise, you risk having to redo the entire project after discovering a security �aw in your design during
the write-up.

Writing the proj2.go following the instructions.

• Printing out the instructions and using a pen to circle those that have been done may be useful.

• The TAs might or might not distribute limited printed copies of the instructions during the discussion
sections and o�ce hours.

• If you need to compile your code, see the next section on how to test.

Running and writing small tests for the project.

• Open proj2_test.go which already contains some basic tests.

• When you �nish some code, run the following command in the terminal:

go test -v

• You are expected to see some syntax errors (if not, you are awesome). Fix them and continue.

• Add more tests for the things you are not sure about.

• It is normal that you failed some tests because you haven’t yet implemented some functions. Don’t
be frustrated. We hope such error messages can encourage you to �nish this project asap.

You should add more tests to proj2_test.go because the project will be graded based on the code coverage.

80% of code coverage will su�ce for full credit for code coverage.

Please �nd how to test the code coverage in Golang here.

How to complete this project in one day?

It is recommended to �nd some consecutive, rather than discrete, hours with or without your teammate
to work on the project 2. This is a big system and it will require a big STATE in your brain.

That said, please do not overstay during the o�ce hours. O�ce hours also subject to the Fire Code.

Project 2 Page 10 of 21 CS 161 – SP 19

https://stackoverflow.com/questions/10516662/how-to-measure-code-coverage-in-golang

4 Part 1: Single-User File Storage

System architecture. The �le sharing system consists of many users and two servers.

• Many users connect to the two servers via a client program (designed by you!).

• The �rst server, Datastore, provides key-value storage for everyone.

• The second server, Keystore, provides a public key store for everyone.

You need to implement the stateless client program for the users.

Security guarantees:

• Any data placed on the servers should be available only to the owner and people that the owner
explicitly shared the �le with, not the server.

– The server and other users should not learn the �le content, the �lename, and who owns the
�le, unless one shares the �le with them.

• The server is allowed to know the length of the �le content you store, which you don’t need to hide.

• If the server modi�ed the data you stored, you should be able to detect that and trigger an error. It is
okay if the server returns a previous version of the �le, which the client does not need to detect.

• New: Filenames must be hidden from the server, but it is okay to leak the length of the �lenames.

Roadmap:

� Understand that you need to simultaneously provide con�dentiality and integrity.

� Understand that you should not import any other libraries except those already in proj2.go.

� Understand that you should not create new global variables. All functions should run statelessly.

� User structures, InitUser (§4.1) and GetUser (§4.2). Here, the GetUser should be able to obtain the
private key that you generated during the InitUser.

� Adding �le storage functionalities, LoadFile (§4.4) and StoreFile (§4.3). Note that adding something
in the User structure may simplify the design.

� Support e�cient append, AppendFile (§4.5). This will likely modify your previous design of �le
storage.

4.1 InitUser: Create a user account.

Implement this function:

InitUser(username string, password string) (userdataptr *User, err error).

This function should:

• Generate the user data structure.

• Generate a key pair for digital signatures.

– i.e., the signing key (sk) and the verifying key (vk).

Project 2 Page 11 of 21 CS 161 – SP 19

• Generate a key pair for asymmetric encryption.

– i.e., the decryption key (dk) and the encryption key (ek).

• Store private keys in the user structure.

• Store the user structure somewhere persistently. Note that you need con�dentiality and integrity
against the Datastore server (see §2.4 for some options).

• Post the two public keys somewhere publicly, so that other users can retrieve this user’s public key.

• Return a pointer to this structure.

• See the footnote.1

• If the RSA key generation or any other functions you are using fails, return its error code. The
autograder checks for the error code.

• If the function ends successfully, be sure to return nil for the error code.

New: We can assume that user passwords have su�cient entropy. Thus, it is infeasible for an attacker to
guess a password. Yet, it is possible that two honest users choose the same password.

Warning: The client is stateless, meaning that the client forgets everything after system reboot. So, you
need to ensure that given the same username and the same password, the user can later run GetUser to
obtain the same private keys generated here.

4.2 GetUser: Log in using username and password.

Implement this function:

GetUser(username string, password string)

This function should:

• Obtain back the user data structure being created during InitUser, which is stored somewhere with
some con�dentiality and integrity.

• Obtain back the signing key for digital signatures.

• Obtain back the decryption key for asymmetric encryption.

• Return a pointer to this structure.

• If the data obtained is incorrect, for example, the integrity check fails, returns an error.

• If the function ends successfully, be sure to return nil for the error code.

Warning: You cannot use global variables to store user information, which will make the autograder unhappy.
Like what was said in the InitUser, you need to store the user structure somewhere persistently (see §2 for
some options).

1The secret shibboleth that you need to use during the o�ce hours is: Di�e-Hellman. TAs may ask you this shibboleth to see if
you actually read the instructions before coming to the o�ce hours.

Project 2 Page 12 of 21 CS 161 – SP 19

4.3 userdata.StoreFile: Store user �les

Hint: Although intentionally not mentioned in InitUser and GetUser, it might be a good idea for us to �rst
set up a �le allocation table or something.

Implement this method:

StoreFile(filename string, data []byte)

This method should:

• Store the data for this �le permanently on Datastore, with con�dentiality and integrity guarantee.

• Must be place in a secret place in Datastore, otherwise other users may tamper with the data of the
�le, e.g., remove the �le content.

– Note that the �lename does not have su�cient entropy.

– Di�erent users should be allow to use the same �lename and they should not interfere each
other.

– If two honest users have the same passwords, but they do not want to attack each other, their
�les should not interfere each other.

• New: Filenames must be hidden from the server, but it is okay to leak the length of the �lenames.

• No need to return an error code. So if there is any error, ignore.

• Warning: If you change something in the user structure, don’t forget to upload the new user structure
– the user structure does not automatically synchronize with the remote version.

• Recommendation: You might want to generate the UUID used to store this �lename from random and
store this UUID somewhere, instead of deterministically derived from the �lename. The same for the
keys that you might use to encrypt and MAC the data. You will see why this is necessary when we
go to Part 2 (§5). Please treat this recommendation seriously.

Warning: Each time you encrypt a �le, you must use a di�erent IV if you are using symmetric encryption.

4.4 userdata.LoadFile: Load user �les

Implement this method:

LoadFile(filename string) (data []byte, err error)

This method should:

• Return the latest version of the �le data.

• If the �le does not exist, return nil as the data and trigger an error.

• If the �le seems to be tampered, return nil as the data and trigger an error.

• Only return some non-nil data if it is the correct copy, which should pass some integrity check.

Project 2 Page 13 of 21 CS 161 – SP 19

4.5 userdata.AppendFile: E�ciently append data to an existing �le

Implement this method:

AppendFile(filename string, data []byte) (err error)

This method should:

• Append the data to the end of the �le.

• If the �le does not exist, return nil as the data and trigger an error.

• Do not need to check the integrity of the existing �le. But if the �le is badly broken, return nil as
the data and trigger an error. This is not required.

• Importantly, this append must be e�cient, de�ned as follows:

– If before the append, the �le has a size 1000TB, and you just want to add one byte, you should
not need to download or decrypt the whole �le. It should be as lithe as a feather.

– Almost all of us reading this line will need to sit back and redesign how we store the �le, which
is expected. Don’t panic. It is good.

– You probably need to design some fancy �le storage structure.

– Warning: That said, you should treat cryptography as black boxes. Do not use cryptography
in a fancy way, like playing with the IV value. Instead, this fancy �le storage structure we
mentioned here will be something else.

• Do not forget to update the user structure if you change it.

You need to write your own tests for AppendFile.

Warning: Recall that it is okay for the server to return a previous version of the �le, but not a version that
likely mixes the old and new data, as the security guarantees (§4) said. Double check whether your new
design achieves this guarantee.

4.6 Before reaching the next stage

Congratulations! You deserve a pizza, good for you – Drew Barth.

Before you go to the next part, please do the following:

• Thank your teammate.

• Run go test -v in case there are some issues for the �rst two tests.

• Stay hydrated.

• Write some sentences in the DD (§3 and §6).

• Write some additional tests, if there are any need to increase the code coverage (see §3 for how to
measure the code coverage).

• Submit a response to this Google form: link.

Project 2 Page 14 of 21 CS 161 – SP 19

https://docs.google.com/forms/d/e/1FAIpQLSf6HLf-pLSJB7RyeSYrDxizmZRNOzfQB96aHYVniXhXX7N7tw/viewform?usp=pp_url

• Please answer one student question about the project 2 in Piazza.2 But don’t reveal too much. That
being said, don’t intentionally mislead someone else to the wrong direction (e.g., TA told me that
AES is broken last week, so don’t use that).

2In case you don’t know the link: https://piazza.com/class/jqemlqsll3a5hm

Project 2 Page 15 of 21 CS 161 – SP 19

https://piazza.com/class/jqemlqsll3a5hm

5 Part 2: Sharing and Revocation

System architecture, additional information: The �le sharing system allows users to share �les.

• Suppose there are two users U and V . They should have already posted their public keys somewhere
so each one of them can �nd each other’s public keys.

• If U wants to share �le F with V , U assembles something we call a magic string and sends this magic
string to V .

• Using this magic string, V can obtain full permission to F , allowing V to read, write, and share the
�le.

• U can revoke the permission for F from all other users.

Security guarantee, additional information:

• The channel that U and V use to talk to each other is insecure. Thus, that magic string needs both
con�dentiality and integrity. You can look for some options in §2.4.

Reminder of a recommendation:
We provided a recommendation in the description of StoreFile (§4.3). If you encounter major design di�culty
in ShareFile (§5.1) or ReceiveFile (§5.1), come back to read that recommendation. Some substantial changes
might be needed if you approach di�ers signi�cantly from that recommendation.

API example: To help understand the functionality we want, here we show an example code:

u1, _ := GetUser(" user_alice " , "pw1")
u2, _ := InitUser ("user_bob" , "pw2")

v1, _ := u1. LoadFile (" the_�le_that_I_want_to_share_with_Bob ")
magic_string , err := u1. ShareFile (" the_�le_that_I_want_to_share_with_Bob " , "user_bob")

u2. ReceiveFile (" the_�le_from_alice " , " user_alice " , magic_string)
v2, _ = u2. LoadFile (" the_�le_from_alice ")

// v1 should be the same as v2

As you can see here, after user Alice gave the magic string, user Bob can access the �le (under a di�erent
�lename, but actually the same �le).

Importantly, if later Bob changes the �le, Alice’s �le WILL be UPDATED. That is to say, Alice and Bob are
actually sharing the same �le, not just Alice sending a copy to Bob.

Roadmap:

• Sit back and think about how to implement that magic string.

• Implement ShareFile (§5.1) and ReceiveFile (§5.2) and run the test in proj2_test.go, as well as your
additional tests.

• Implement RevokeFile (§5.3) and write more tests for the revoke functionality.

Project 2 Page 16 of 21 CS 161 – SP 19

5.1 userdata.ShareFile: File sharing with con�dentiality, integrity and authenticity

Implement this method:

ShareFile(filename string, recipient string) (magic_string string, err error)

This method should:

• Generate a magic string with some con�dentiality, integrity and authenticity.

– That is to say, only the recipient can use this magic string to obtain permission (con�dentiality),
and the recipient can verify whether the magic string is from the correct sender (authenticity)
and has not been tampered with (integrity).

• If the �le does not exist, trigger an error and return with an empty string.

• If you �nd it hard to convert something into a string, see here: link.

• The recipient should later be able to do all the following:

– Read data in this �le.

– Write data to this �le, which the sender will see the update.

– Share this �le with others.

– Revoke this �le, discussed later in §5.3.

• The recipient should only have permission about the �le being shared, not other �les from the sender.
For example, sending the sender’s password is not a valid solution.

• Do not assume the sender and the recipient are online at the same time. The permission must be
passed in one shot, via the magic string.

5.2 userData.ReceiveFile: Adding �le permission

Implement this method:

ReceiveFile(filename string, sender string, magic_string string) error

This method should:

• Create a �le with the �lename. Note that the �lename does not need to be the same with the �lename
that the sender uses to call that �le.

• If the �lename has already been used in the recipient side, trigger an error and return.

• Do not forget to upload the user structure, if you change it.

• The recipient should be able to read, modify, share, and revoke this �le as if he/she owns this �le.

• The sender should see all the changes of the �le. That is to say, there is only one �le, and the �le is
really being shared.

• Requirement: Do not store the �le multiple times. For example, if user Alice shares a 1000TB �le with
Bob, Bob should not create another �le that takes another 1000TB storage space.

Project 2 Page 17 of 21 CS 161 – SP 19

https://golang.org/pkg/encoding/hex/

5.3 userData.RevokeFile: Burn it with �re

Read the title carefully, and implement this method:

RevokeFile(filename string) error

If user U owns �le F calls this method on F , this method should:

• Delete �le F , so that no other user can read this �le.

– If all other users sharing F did not save a local copy of the �le content, nobody can obtain the
content of this revoked �le anymore.

– Other users may see an error that the �le does not exist or an empty �le, you decide.

• Recreate �le F with the same �le content, but this time, not shared with anyone else.

• Return an error if F does not exist.

RevokeFile should work correctly when the owner U calls this method. If U shares this �le with V , and
user V invokes RevokeFile, the result is unde�ned. In particular, it is ok if your implementation allows V to
successfully revoke the �le so that neither U nor any other user can access it.

Example Here is an example work�ow of RevokeFile, as follows.

If user Alice owns “file” and shared the �le to Bob.

u1, _ := GetUser(" user_alice " , "pw1")
u2, _ := InitUser ("user_bob" , "pw2")

magic_string , err := u1. ShareFile (" �le " , "user_bob")
u2. ReceiveFile (" alice_�le " , " user_alice " , magic_string)

Then Bob will have access to Alice’s �le, under the �lename “alice_file”.

Next, Alice revokes the permission of this �le, that is, deletes this �le, and recreates it.

u1, _ := GetUser(" user_alice " , "pw1")
u1.RevokeFile (" �le ")

Now, Alice can still access “file”, but Bob cannot.

�le_data , _ := u1. LoadFile (" �le ")

Alice can update the �le:

u1, _ := GetUser(" user_alice " , "pw1")
u1. StoreFile (" �le " , new_�le_data)

Alice no longer shares this �le with Bob. You must ensure two things:

• Bob does not have access to the new �le content.

Project 2 Page 18 of 21 CS 161 – SP 19

• Bob does not even realize that the �le is recently updated by Alice.

This property might require us change the implementation of key management, including StoreFile (§4.3),
LoadFile (§4.4), and AppendFile (§5.1), which is expected if you did not follow the recommendation in §4.3.
Basically, �le location and �le keys should better not depend on the �lename.

Project 2 Page 19 of 21 CS 161 – SP 19

6 Design document

Write a clear, concise design document (DD) to go along with your code. Your DD should be split into two
sections. The �rst contains the design of your system, and the choices you made; the second contains a
security analysis.

A well-written DD receiving full points could be even less than two pages! If a DD is excessively verbose3,
this DD might lose points.

You do not need to draw fancy �gures in the DD because it is not worthwhile. A full-point DD only needs
to explain the ideas clearly.

If you followed the recommendation in §3, the Google document should be a good start for your DD. You
can create the PDF for DD in Google document by File → Download as → PDF Document (.pdf).

Section 1: System Design

In the �rst section, summarize the design of your system. Explain the major design choices you made,
written in a manner such that an average 161 student could take it, re-implement your client, and achieve a
grade similar to yours. It should also describe your testing methodology in your proj2_test.go �le.

If you’re looking for somewhere to get started, you can begin by asking yourselves six questions:

� How is each client initialized?

� How is a �le stored on the server?

� How are �le names on the server determined?

� What is the process of sharing a �le with a user?

� What is the process of revoking a user’s access to a �le?

� How were each of these components tested?

Section 2: Security Analysis

The second part of your design document is a security analysis.

⋄ Present at least three and at most �ve concrete attacks that you have come up with and how your
design protects against each attack.

Only three are needed for full credit; in the event that more than three are provided your score will be
determined by the three which provide us the most credit.

You should not need more than one paragraph each to explain how your implementation defends against
the attacks you present. Make sure that your attacks cover di�erent aspects of the design of your system.
That is, don’t provide three attacks all involving �le storage but nothing involving sharing or revocation.

3 If after writing your design document, you realize that you have a 10-page document with 100 lines of code and think to
yourselves “The CS162 TAs would be proud of this,” you will likely be disappointed in your grade. That is not a design document.
That is an implementation with comments.

Project 2 Page 20 of 21 CS 161 – SP 19

7 Submission and Grading

Please submit a response to another Google Form (link) so the TAs can estimate how many people complete
the project.

Your �nal score on this part of the project will be the minimum of the functionality score and security score.
Each failed security test will lower the security score, weighted by the impact of the vulnerability.

All tests will be run in a sandbox, and if your code is in any way malicious, we will notice, as described in
§1.3. Please be gentle to the autograder, which is going to having his �rst birthday.

8 Submission Summary

You must submit the following �les for the project. See announcement in Gradescope for more information.

proj2.go
proj2_test.go
design.pdf

Project 2 Page 21 of 21 CS 161 – SP 19

https://docs.google.com/forms/d/e/1FAIpQLSec4GwhBGldiDIw02s8cV4UVMGdS2yKzFdTk4eGOD6f48vfjQ/viewform?usp=pp_url

	Environment Setup
	Golang quizzes
	Skeleton code
	Autograder rule

	API
	Universally unique identifier (UUID)
	Datastore: A store of encrypted data
	Keystore: A store of public keys
	Cryptography functions
	Public key encryption (PKE)
	Digital signatures (DS)
	Hash-based message authentication code (HMAC)
	Hash-based key derivation function (HKDF)
	Password hashing function
	Symmetric encryption
	Random byte generator
	Authenticated encryption

	Design Security in From the Start
	Part 1: Single-User File Storage
	InitUser: Create a user account.
	GetUser: Log in using username and password.
	userdata.StoreFile: Store user files
	userdata.LoadFile: Load user files
	userdata.AppendFile: Efficiently append data to an existing file
	Before reaching the next stage

	Part 2: Sharing and Revocation
	userdata.ShareFile: File sharing with confidentiality, integrity and authenticity
	userData.ReceiveFile: Adding file permission
	userData.RevokeFile: Burn it with fire

	Design document
	Submission and Grading
	Submission Summary

