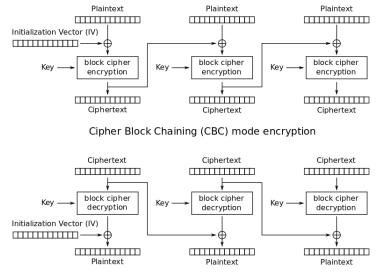
Week of February 11, 2019: Cryptography I

Question 1 Block Cipher Potpourri

(a) What is the difference between IND-KPA and IND-CPA?

- (b) Are block ciphers IND-CPA?
- (c) What are good possible sources of entropy for key generation for a block cipher?
 - The computer's clock time (assumed in seconds)
 - The Parent Process ID \oplus my Process ID \oplus time
 - Hardware noise generator
 - Hardware noise generator \oplus time
 - 101010101... \oplus Hardware noise generator
- (d) Why does a block cipher need to be a permutation?


(20 min)

Question 2 PRNGs and stream ciphers

- (a) Pretend I have given you a pseudo-random number generator R. R is a function that takes a 128-bit seed s, an integer n, and an integer m, and outputs the $m^{\rm th}$ (inclusive) through $m^{\rm th}$ (exclusive) pseudo-random bits produced by the generator when it is seeded with seed s. Use R to make a secure symmetric-key encryption scheme. That is, define the key generation algorithm, the encryption algorithm, and the decryption algorithm.
- (b) Explain how using a block cipher in counter (CTR) mode is similar to the scenario described above.

Question 3 Block cipher security and modes of operation

As a reminder, the cipher-block chaining (CBC) mode of operation works like this:

Cipher Block Chaining (CBC) mode decryption

The output of the encryption is the ciphertext concatenated with the IV that was used.

- (a) Does the initialization vector (IV) have to be non-repeating? Why?
- (b) Is a non-repeating IV enough? Imagine you sequentially picked IVs from a list of non-repeating, but publicly-known, numbers, e.g., A Million Random Digits with 100,000 Normal Deviates (RAND, 1955).

Say Alice encrypts the one-block long message m_1 with initialization vector IV_1 to get C_1 and encrypts m_2 using IV_2 to get C_2 . She gives these to Mallory and challenges her to tell which C came from which m.

Mallory knows that Alice's next IV will be IV_3 , and can ask Alice to encrypt messages for her (a *chosen plaintext attack*). Can Mallory distinguish the two ciphertexts?

(20 min)