Overflows, Injection,
& Memory Sfty

P 3 1

FIF O s

ey

e

—

- 4

https://inst.eecs.berkeley.edu/~cs161/sul9/feedback

https://inst.eecs.berkeley.edu/~cs161/su19/feedback

Announcements...

° HWO due tonight!
®* Find project partners

® Solo or with a partner, it Is up to you
®* Discussion size 101 > 102 > 103

Internet of Shit...

Computer Science 161 S Dutra and Jawale

®* A device produced by the lowest bidder...

® That you then connect through the network

* This has a very wide attack surface
® Methods where an attacker might access a vulnerability

* And its often incredibly cost sensitive

® Very little support after purchase
®* So things don't get patched

® No way for the user to tell what is "secure" or "not"
* But they can tell what is cheaper!

* And often it is Insanely insecure:
Default passwords on telnet of admin/admin...
Trivial buffer overflows

Net Of A Million Spies...

Computer Science

* Device only communicates through a central service
® Greatly reduces the attack surface but...

* Most of the companies running the service are "Data

Asset" companies

® Make their money from advertising, not the product themselves
®* May actually subsidize the product considerably

® Some you know about: Google, Amazon
® Some you may not: Salesforce

Computer Science 161

Computer Science 161 e 010 Dutra and Jawale

= Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title {optional): First Name: _Ml'ddle Name: Last Name:
| Dr. sl Alice Smith

L Travelers are required to enter a middle name/initial If one Is
Gender: Date of Birth: listed on thelr government-issued photo ID.

| Female +l 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.5. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
(%) No Preference () Aisle () Window

Computer Science 161 Summer 2019

Computer Science 161 Summer 2019

— = e e e — & e v it b ik, Sl il e R . S .

Computer Science 161 Summer 2019 Dutra and Jawale

= Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title {optional): First Name: _Ml'ddle Name: Last Name:

| Dr. s Alice Smithhhhhhhhhhhhh
e Travelers are required to enter a middle name/Initial If one Is

Gender: Date of Birth: listed on their government-issued photo 1D.

(Female %] 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.5. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
) Mo Preference () Aicle) Window

Computer Science 161 Summer 2019

How could Alice exploit this?
Find a partner and talk it through.

Computer Science 161 Summer 2019 Dutra and Jawale

i Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:

[Dr. 4] Alice Smith First
el Travelers are required to enter a middle name/initial If one Is

Gender: Date of Birth: listed on thelr government-|ssued photo 10.

(Female 3] 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.5. Learn more

+ Known Traveler Number/Pass ID (optional): 7]

+ Redress Number (optional): 2]

Seat Request:
el Pl Drafaranca 8 Aicla 08 VAFimAeia

Computer Science 161 Summer 2019

— = e e e — & e v it b ik, Sl il e R . S .

Computer Science 161 Summer 2019

Passenger last name:
“Smith First Special Instrux: Treat As Human.”

Computer Science 161 Summer 2019 Dutra and Jawale

char name[20];:

void vulnerable() {

gets(name);

Computer Science 161 Summer 2019 Dutra and Jawale

char namel20];
char 1instrux[80] = "none",

void vulnerable() {

gets(name);

Computer Science 161 Summer 2019 Dutra and Jawale

char name[20];
1nt seatinfirstclass = 0;

void vulnerable() {

gets(name);

char name[20];
int authenticated = 0;

void vulnerable() {

gets(name);

char line[512];
char command[] =
‘/usr/bin/finger";

void main() {

gets(line);

execv(command, ...):

}

char name[20];:
int (*fnptr)();

void vulnerable() {

éets(name);

Computer Science 161

Rank |Score ID Name

r1] /93.8 |CWE-89 %EET?Ej;Ldt?sgflizatinn of Special Elements used in an SQL Command

127 I 93 2 I CWE-78 I?E};r?;?;nhiﬁzr?:;:z:;:nﬁf Special Elements used in an OS Command
| [3] |[79.0 |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

r4] | 77 7 | CWE-79 IFEE;:E.EEEt:E;;?;iI:;E?n of Input During Web Page Generation |

[5]1 |[76.9 |CWE-306 |Missing Authentication for Critical Function

[6] [|76.8 |CWE-862 |Missing Authorization

[7] ||75.0 |CWE-798 |Use of Hard-coded Credentials

[8] ||75.0 |CWE-311 |Missing Encryption of Sensitive Data

[9] [(74.0 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[10] |73.8 ||CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] [73.1 |CWE-250 |Execution with Unnecessary Privileges

[12] [|70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

r137 |69.3 |CWE-22 -Irr:air;rzuzrl"r:_imitatinn of a Pathname to a Restricted Directory ('Path

[14] [|68.5 |CWE-494 |Download of Code Without Integrity Check

[15] [67.8 ||CWE-863 |Incorrect Authorization

[16] |66.0 |CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

|

void vulnerable() {
char buf[64]:

gets (buf);

vold still vulnerable?() {
char *buf = malloc(64);

gets(buf);

IE's Role in the Google-China War

By Richard Adhikari
TechNewsWorld
01/15/10 12:25 PM PT

. The hack attack on Google that set off the company's
= ongoing standoff with China appears to have come
. A through a zero-day flaw in Microsoft's Internet Explorer
browser. Microsoft has released a security advisory, and
researchers are hard at work studying the exploit. The attack appears to consist
of several files, each a different piece of malware.

Computer security companies are scurrying to cope with the fallout from the Internet
Explorer (IE) flaw that led to cyberattacks on Google (Nasdaq: GOOG) and its corporate
and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen
files dropped on infected PCs so far," Dmitri Alperovitch, vice president of research at
McAfee Labs, told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud
between the Internet giant and the nation's government over censorship, and it could
result in Google pulling away from its business dealings in the country.

Pointing to the Flaw

he vulnerability in IE is an invalid pointer reference, Microsoft (Nasdaq: MSFT) said In
security advisory 979352, which it issued on Thursday. Under certain conditions, the
Invalid pointer can be accessed after an Db_]ECt Is deleted, the advisory states. In spegi
crafted attac X Bieeeage piniEe can allow
remote execution of code when the flaw is exploited.

Linux (32-bit) process memory layout

Computer Science 161 Summer 2019 Dutra and Jawale

Reserved for Kerne

user stac

run tirne heap

OXFFFFFFFF

-OXCOOO0000

static data segment
text segment (program

OXCOOOOOO0O
user stac

To previous stack

frame pointer

Computer Science 161 Sur

arguments

return address

4

shared libraries

stack frame pointer

exception handlers

. To the point at which
) OX40000000 local variables e
run tifi p heap
callee saved registers

static data
segment

text segment
(program)
“ .
OXO0000000

vold safe() {
char buft[64];

fgets(buf, 64, stdin);

Computer Science 161 Summer 2019

vold safer() A
char bufl[o4];

fgets(buf,sizeof (buf),stdin);

} .

void vilnerabW@(int len, char

*data) {
char buf[64];
1t (len > 64)
return;
memcpy (buf, data, len);

}
memcpy(void *sl1l, const void *52, n),

volid safe(size t len, char *data) {
char buft[64];

1f (len > 64)
return;
memcpy(buf, data, Llen);

}

vold f(size t len, char *data) {
char *buf = malloc(len+2);
1T (buf == NULL) return;

memcpy (buf, data, len);
buf[len] = '\n';
buf[len+l] = '\0';

Is It safe? Talk to your partner.

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

Dutra and Jawale

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, 1t turns out the
amendment passed.

Fsoftware 1s not geared to count more than 32,000 votes 1n a
precinct. So what happens when it gets to 32,000 is the software starts _ 8 4
sQunting backward,” said Broward County Mayor Ilene Lieberman Broward County Mayor

Ilene Lieberman says
voting counting error 1s an
"embarrassing mistake."

(1

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, 1t’s clear amendment 4 passed.

Computer Science 161 Summer 2019

vold vulnerable() {
char buf[64];
1f (fgets(buf, 64, stdin) ==

NULLi
PDrin OUT) ;

}

Computer Science 161 Summer 2019 Dutra and Jawale

printf("you scored %d\n", score);

printf(“you scored %d\n"”, score);

Dutra and Jawale

0x8048464

Computer Science 161 Summer 2019 Dutra and Jawale

printf("a %s costs %$%d\n", 1tem,
price);

Dutra and Jawale

0x8048464

Fun With printf format strings...

. Format argument is missing!
printf("100% dud@:

EEITETISTE nrintf(“100% dude!”)

Ox8048464

More Fun With printf format strings...

printf("100% dude!");

= prints value 4 bytes above retaddr as integer

printf("100% sir!");
= prints bytes pointed to by that stack entry

up through first NUL
printf("%d %d %d %d ...");

= prints series of stack entries as integers

pr1ntf("° %S") :

= prints value 4 bytes above retaddr plus bytes
pointed to by preceding stack entry

printf("100% nuke'm!");

Computer Science 161 S Dutra and Jawale

%n writes the number of characters printed so far into
the corresponding format argument.

int report cost(int item num, 1int price) {
int colon offset;
printf("item %d:%n $%d\n", 1tem num,
&colon offset, price);
return colon offset;

}

report cost(3, 22) prints "item 3: $22°"
and returns the value 7

report cost(987, 5) prints "1tem 987: $5"
and returns the value 9

%hn is the same, but writes a short instead of 1nt

Computer Science 161 S Dutra and Jawale

%n writes the number of characters printed so far into
the corresponding format argument.

int report cost(int item num, 1int price) {
short int colon offset;
printf("item %d:%hn $%d\n", 1tem num,
&colon offset, price);
return colon offset;

}

report cost(3, 22) prints "item 3: $22°"
and returns the value 7

report cost(987, 5) prints "1tem 987: $5"
and returns the value 9

Fun With printf format strings...

printf("100% dude!");

= prints value 4 bytes above retaddr as integer

printf("100% sir!");
= prints bytes pointed to by that stack entry

up through first NUL
printf("%sd %d %d %d ...");
= prints series of stack entries as integers

printf("%sd %s");

= prints value 4 bytes above retaddr plus bytes
pointed to by preceding stack entry

printf("100% nuke’'m!"):

= writes the value 3 to the address pointed to by stack entry

Computer Science 161 Summer 2019

vold safe() {
char buf[64];
1f (fgets(buf, 64, stdin) ==

NULL)
return;
printf("%s", buf);

}

And Now;
Lets Walk Through A Stack Overflow

Computer Sci 161 Summer 2019

° Idea. We override a buffer on the stack...

® In the buffer we place some code of our choosing
* "Shellcode"

® Override the return address to point to code of our choosing

* Lets step through the process on an x86...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

