
Computer Science 161 Summer 2019 Dutra and Jawale

Software Security:
Defenses

Happy SF Pride!
https://inst.eecs.berkeley.edu/~cs161/su19/feedback

https://inst.eecs.berkeley.edu/~cs161/su19/feedback

Computer Science 161 Summer 2019 Dutra and Jawale

Announcements...

 HW1 released
Due July 8
 Project 1 due July 11

Computer Science 161 Summer 2019 Dutra and Jawale

It isn't just the stack...

 Control flow attacks require that the attacker
overwrite a piece of memory that contains a pointer
for future code execution

 The return address on the stack is just the easiest target

 You can cause plenty of mayhem overwriting
memory in the heap...

 And it is made easier when targeting C++

 Allows alternate ways to hijack control flow of the
program

Computer Science 161 Summer 2019 Dutra and Jawale

Compiler Operation:
Compiling Object Oriented Code

class Foo {
 int i, j, k;
 public virtual void bar(){ ... }
 public virtual void baz(){ ... }
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...

Computer Science 161 Summer 2019 Dutra and Jawale

So Targets For
Overwriting...

 If you can overwrite a vtable pointer…
 It is effectively the same as overwriting the return address pointer on the stack:

When the function gets invoked the control flow is hijacked to point to the attacker’s
code

 The only difference is that instead of overwriting with a pointer you overwrite it with a
pointer to a table of pointers...

 Heap Overflow:
 A buffer in the heap is not checked:

Attacker writes beyond and overwrites the vtable pointer of the next object in memory

 Use-after-free:
 An object is deallocated too early:

Attacker writes new data in a newly reallocated block that overwrites the vtable
pointer

 Object is then invoked

Computer Science 161 Summer 2019 Dutra and Jawale

Magic Numbers & Exploitation…

 Exploits can often be very brittle
 You see this on your Project 1: Your ./egg will not work

on someone else’s VM because the memory layout is
different

 Making an exploit robust is an art unto itself:
e.g. EXTRABACON…

 EXTRABACON is an NSA exploit for Cisco ASA
“Adaptive Security Appliances”

 It had an exploitable stack-overflow vulnerability in the
SNMP read operation

 But actual exploitation required two steps:
Query for the particular version (with an SMTP read)
Select the proper set of magic numbers for that version

Computer Science 161 Summer 2019 Dutra and Jawale

ETERNALBLUE(screen)

 ETERNALBLUE is another NSA exploit
 Stolen by the same group

("ShadowBrokers") which stole
EXTRABACON

 Eventually it was very robust...
 This was "god mode":

remote exploit Windows through SMBv1
(Windows File sharing)

 But initially it was jokingly called
ETERNALBLUESCREEN

 Because it would crash Windows computers
more reliably than exploitation.

Computer Science 161 Summer 2019 Dutra and Jawale

One defense:
Don't Use C or C++

 Instead, use a safe language:
 Turns "undefined" memory references into an immediate exception or

program termination

 Now you simply don't have to worry about buffer overflows and similar
vulnerabilities

 Plenty to chose from:
 Python, Java, Go (project 2), Rust (if you need C's mostly-deterministicish

performance), Swift... Pretty much everything other than
C/C++/Objective C

Computer Science 161 Summer 2019 Dutra and Jawale

But Suppose You Don’t Want
To? What Then?

 A large back-and-forth arms race trying to prevent
memory errors from being exploitable for code
injection

 An attacker can still use them to crash the program
 An attempt at defense-in-depth

 Stack Canaries
 Non-Executable Pages
 Address-Space-Layout-Randomization + SelfRando
 Control Flow Integrity

Computer Science 161 Summer 2019 Dutra and Jawale

Stack Canaries…

 Goal is to protect the return
pointer from being overwritten by
a stack buffer…

 When the program starts up,
create a random value

 The “stack canary”

 When returning in a function
 First check the canary against the stored

value

Saved Return Addr

Saved Frame Ptr

🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦

data...

data...

data...

data...

aoeu

Computer Science 161 Summer 2019 Dutra and Jawale

How To (Not) Kill the Canary…

 Find out what the canary is!
 A format string vulnerability
 An information leak elsewhere that dumps it
 Now can overwrite the canary with itself…

 Write around the canary
 Format string vulnerabilities

 Overflow in the heap, or a C++ object on the stack
 QED: Bypassable but raises the bar
 A simple stack overflow doesn’t work anymore:

Need something a bit more robust
 Minor but nearly negligible performance impact
 First deployed in 1997 with “StackGuard”

 It requires a compiler flag to enable on Linux, but…
 THERE IS NO EXCUSE NOT TO HAVE THIS ENABLED!!! I'M LOOKING AT YOU

CISCO ASA!

Computer Science 161 Summer 2019 Dutra and Jawale

And Canary Entropy…

 On 32b x86 the canary is a 32b value
 It is 64b on x86-64

 One byte of the canary is always x0
 Since some buffer overflows can’t include null bytes:

e.g. if the vulnerability is in a bad call to strcpy

 But this means you can (possibly) brute-force the
canary

 It would only requires an expected 224 tries or so!
 Think of this as “you need to try ~16 million times”:

210 ~= 103

Computer Science 161 Summer 2019 Dutra and Jawale

Non-Executable Pages

 We remember how the TLB/page table has multiple bits:
 R -> Can Read

W -> Can Write
X -> Can Execute

 So lets maintain W xor X as a global property
 Now you can’t write code to the stack or heap

 Unfortunately that is insufficient
 “Return into libc”: Just set up the stack and “return” to exec
 Especially easy on x86 since arguments are passed on the stack

 “Return Oriented Programming”

Computer Science 161 Summer 2019 Dutra and Jawale

Return Oriented Programming...

 The deep-voodoo idea:
 Given a code library, find a set of fragments (gadgets) that when called

together execute the desired function
 The "ROP Chain"

 Inject onto the stack a sequence of saved "return addresses" that will
invoke this

 The lazy-hacker idea:
 Somebody else did the deep voodoo already. I can just google for "ROP

compiler" and download an existing tool

 Tools democratize things for attacker's:
 Yesterday's Ph.D. thesis or academic paper is today's Intelligence

Agency tool and tomorrow's Script Kiddie download

Computer Science 161 Summer 2019 Dutra and Jawale

W^X is Somewhat Ubiquitous As Well:
Playing games with the page table...
 The OS enforces a simple rule:

By default, a memory page may be writeable or executable but
not both!

 Effectively no performance impact
 Synergistic interaction with ASLR

 Does break some code…
 Stuff which dynamically generates code on the fly and doesn’t know about W^X.

 So basically stuff that deserves to break
 FreeBSD deployed in 2003, Windows in 2004
 But don’t always have apps supporting it!

 Yet still often not ubiquitous on embedded systems
 See “Internet of Shit”, Cisco ASA security appliances…

Computer Science 161 Summer 2019 Dutra and Jawale

Address Space Layout Randomization

 Start things more randomly
 Especially on 64b operating systems with 64b memory space:

64b operating systems tend to be significantly harder to exploit

 Randomly relocate everything:
 Every library, the start of the stack & heap, etc…
 With 64b of space you have lots of entropy
 Everything needs to be relocatable anyway:

Modern systems use relocatable code and link at runtime

 32b? Not-so-much

 When combined with W^X, need an information leak
 Often a separate vulnerability, such as a way to find the address of a function
 To find the magic offset needed to modify your ROP chain

Computer Science 161 Summer 2019 Dutra and Jawale

These Defenses-In-Depth in Practice...

 Apple iOS uses ASLR in the kernel and userspace, W^X whenever
possible

 All applications are sandboxed to limit their damage: The kernel is the TCB

 The "Trident" exploit was used by a spyware vendor, the NSO group, to
exploit iPhones of targets

 So to remotely exploit an iPhone, the NSO group's exploit had to...
 Exploit Safari with a memory corruption vulnerability
 Gains remote code execution within the sandbox: write to a R/W/X page as part of the JavaScript JIT

 Exploit a vulnerability to read a section of the kernel stack
 Saved return address & knowing which function called breaks the ASLR

 Exploits a vulnerability in the kernel to enable code execution

 Full details:
https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-
technical-details.pdf

Computer Science 161 Summer 2019 Dutra and Jawale

Reasoning About
Memory Safety

 Memory Safety: No accesses to undefined memory
 "Undefined" is with respect to the semantics of the programming

language

 Read Access:
 An attacker can read memory that he isn't supposed to

 Write Access:
 An attacker can write memory that she isn't supposed to

 Execute Access:
 An attacker can transfer control flow to memory that they isn't

supposed to

Computer Science 161 Summer 2019 Dutra and Jawale

Reasoning About Safety

 How can we have confidence that our code executes in a safe (and
correct, ideally) fashion?

 Approach: build up confidence on a function-by-function / module-by-
module basis

 Modularity provides boundaries for our reasoning:
 Preconditions: what must hold for function to operate correctly
 Postconditions: what holds after function completes

 These basically describe a contract for using the module
 Notions also apply to individual statements (what must hold for

correctness; what holds after execution)
 Stmt #1’s postcondition should logically imply Stmt #2’s precondition
 Invariants: conditions that always hold at a given point in a function (this particularly

matters for loops)

Computer Science 161 Summer 2019 Dutra and Jawale

int deref(int *p) {
 return *p;
}

Precondition?

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: p != NULL
 (and p a valid pointer) */
int deref(int *p) {
 return *p;
}

Precondition: what needs to hold for function to
operate correctly.

Needs to be expressed in a way that a person writing
code to call the function knows how to evaluate.

Computer Science 161 Summer 2019 Dutra and Jawale

void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1); }
 return p;
}

Postcondition?

Computer Science 161 Summer 2019 Dutra and Jawale

/* ensures: retval != NULL (and a valid
pointer) */
void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1);
}
 return p;
} Postcondition: what the function promises will

hold upon its return.

Likewise, expressed in a way that a person using
the call in their code knows how to make use of.

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

Precondition?

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access?
2) Write down precondition it requires
3) Propagate requirement up to beginning of function

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* ?? */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires?
3) Propagate requirement up to beginning of function

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function

size(X) = number of elements allocated for region pointed to by X
size(NULL) = 0

This is an abstract notion, not something built into C (like sizeof).

Computer Science 161 Summer 2019 Dutra and Jawale

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

Computer Science 161 Summer 2019 Dutra and Jawale

Let’s simplify, given that a never changes.

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

Computer Science 161 Summer 2019 Dutra and Jawale

?

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

✓
/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

✓

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

?

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function?

?

Computer Science 161 Summer 2019 Dutra and Jawale

?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

What about i < n ?

?

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

?

What about i < n ? That follows from the loop condition.

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

At this point we know the proposed invariant will always hold...

Computer Science 161 Summer 2019 Dutra and Jawale

… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant: a != NULL &&
 0 <= i && i < n && n <= size(a) */
 total += a[i];
 return total;
}A more complicated loop might need us to use induction:

Base case: first entrance into loop.
 Induction: show that postcondition of last statement of

 loop, plus loop test condition, implies invariant.

Computer Science 161 Summer 2019 Dutra and Jawale

int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL &&
 size(a) >= n &&
 ??? */
int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

Computer Science 161 Summer 2019 Dutra and Jawale

/* requires: a != NULL &&
 size(a) >= n &&
 for all j in 0..n-1, a[j] != NULL */
int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

This may still be memory safe
but it can still have undefined behavior!

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N]; /* N > 0, has type int */

int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
 unsigned int hash(char *s) {
 unsigned int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 unsigned int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Summer 2019 Dutra and Jawale

Writing correct and safe C code is hard

 Do you honestly think a human is going to go through this
process for all their code?

 Because that is what it takes to prevent undefined memory behavior in C or
C++

 Instead, you could use a safe language

Computer Science 161 Summer 2019 Dutra and Jawale

Why does software have vulnerabilities?

 Programmers are humans.
And humans make mistakes.

 Use tools

 Programmers often aren’t security-aware.
 Learn about common types of security flaws.

 Programming languages aren’t designed
well for security.

 Use better languages (Java, Python, …).

Computer Science 161 Summer 2019 Dutra and Jawale

Testing for Software Security Issues

 What makes testing a program for security problems difficult?
 We need to test for the absence of something
 Security is a negative property!

 “nothing bad happens, even in really unusual circumstances”

 Normal inputs rarely stress security-vulnerable code

 How can we test more thoroughly?
 Random inputs (fuzz testing)
 Mutation
 Spec-driven

 How do we tell when we’ve found a problem?
 Crash or other deviant behavior

 How do we tell that we’ve tested enough?
 Hard: but code-coverage tools can help

Computer Science 161 Summer 2019 Dutra and Jawale

Working Towards Secure Systems

 Along with securing individual components, we need
to keep them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality

Computer Science 161 Summer 2019 Dutra and Jawale

Computer Science 161 Summer 2019 Dutra and Jawale

Working Towards Secure Systems

 Along with securing individual components, we need
to keep them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality
 Management burden:
 It never stops (the “patch treadmill”) …

Computer Science 161 Summer 2019 Dutra and Jawale

Computer Science 161 Summer 2019 Dutra and Jawale

Working Towards Secure Systems

 Along with securing individual components, we need to keep
them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality
 Management burden:
 It never stops (the “patch treadmill”) …
 … and can be difficult to track just what’s needed where

 Other (complementary) approaches?
 Vulnerability scanning: probe your systems/networks for known flaws
 Penetration testing (“pen-testing”): pay someone to break into your systems …
 … provided they take excellent notes about how they did it!

Computer Science 161 Summer 2019 Dutra and Jawale

Computer Science 161 Summer 2019 Dutra and Jawale

Some Approaches for
Building Secure Software/Systems
 Run-time checks
 Automatic bounds-checking (overhead)
 What do you do if check fails?

 Address randomization
 Make it hard for attacker to determine layout
 But they might get lucky / sneaky

 Non-executable stack, heap
 May break legacy code
 See also Return-Oriented Programming (ROP)

 Monitor code for run-time misbehavior
 E.g., illegal calling sequences
 But again: what do you if detected?

Computer Science 161 Summer 2019 Dutra and Jawale

Approaches for Secure Software, con’t

 Program in checks / “defensive programming”
 E.g., check for null pointer even though sure pointer will be valid
 Relies on programmer discipline

 Use safe libraries
 E.g. strlcpy, not strcpy; snprintf, not sprintf
 Relies on discipline or tools …

 Bug-finding tools
 Excellent resource as long as not many false positives

 Code review
 Can be very effective … but expensive

Computer Science 161 Summer 2019 Dutra and Jawale

Approaches for Secure Software, con’t

 Use a safe language
 E.g., Java, Python, C#, Go, Rust
 Safe = memory safety, strong typing, hardened libraries
 Installed base? Programmer base? Performance?

 Structure user input
 Constrain how untrusted sources can interact with the system
 Perhaps by implementing a reference monitor

 Contain potential damage
 E.g., run system components in jails or VMs
 Think about privilege separation

Computer Science 161 Summer 2019 Dutra and Jawale

Real World Security: Securing your cellphone...

 The Android Patch Model...
 "Imagine if your Windows update needed to be approved by Intel,

Dell, and Comcast…
 Pixel/Nexus phones get regular updates
 Still need to trust Google

 iPhones get regular updates
 Still need to trust Apple

 I use a Pixel with open source Android (LineageOS)
 Open source replacement for Google Play Services: microG
 Updated every week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

