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Announcements...

 HW1 released
Due July 8
 Project 1 due July 11
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It isn't just the stack...

 Control flow attacks require that the attacker 
overwrite a piece of memory that contains a pointer 
for future code execution

 The return address on the stack is just the easiest target

 You can cause plenty of mayhem overwriting 
memory in the heap... 

 And it is made easier when targeting C++

 Allows alternate ways to hijack control flow of the 
program
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Compiler Operation:
Compiling Object Oriented Code

class Foo {
   int i, j, k;
   public virtual void bar(){ ... }
   public virtual void baz(){ ... }
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...
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So Targets For
Overwriting...

 If you can overwrite a vtable pointer…
 It is effectively the same as overwriting the return address pointer on the stack:

When the function gets invoked the control flow is hijacked to point to the attacker’s 
code

 The only difference is that instead of overwriting with a pointer you overwrite it with a 
pointer to a table of pointers...

 Heap Overflow:
 A buffer in the heap is not checked:

Attacker writes beyond and overwrites the vtable pointer of the next object in memory

 Use-after-free:
 An object is deallocated too early:

Attacker writes new data in a newly reallocated block that overwrites the vtable 
pointer

 Object is then invoked
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Magic Numbers & Exploitation…

 Exploits can often be very brittle
 You see this on your Project 1:  Your ./egg will not work 

on someone else’s VM because the memory layout is 
different

 Making an exploit robust is an art unto itself: 
e.g. EXTRABACON…

 EXTRABACON is an NSA exploit for Cisco ASA 
“Adaptive Security Appliances”

 It had an exploitable stack-overflow vulnerability in the 
SNMP read operation

 But actual exploitation required two steps:
Query for the particular version (with an SMTP read)
Select the proper set of magic numbers for that version 



Computer Science 161 Summer 2019 Dutra and Jawale

ETERNALBLUE(screen)

 ETERNALBLUE is another NSA exploit
 Stolen by the same group 

("ShadowBrokers") which stole 
EXTRABACON

 Eventually it was very robust...
 This was "god mode": 

remote exploit Windows through SMBv1 
(Windows File sharing)

 But initially it was jokingly called 
ETERNALBLUESCREEN

 Because it would crash Windows computers 
more reliably than exploitation.



Computer Science 161 Summer 2019 Dutra and Jawale

One defense:
Don't Use C or C++

 Instead, use a safe language:
 Turns "undefined" memory references into an immediate exception or 

program termination

 Now you simply don't have to worry about buffer overflows and similar 
vulnerabilities

 Plenty to chose from:
 Python, Java, Go (project 2), Rust (if you need C's mostly-deterministicish 

performance), Swift...  Pretty much everything other than 
C/C++/Objective C
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But Suppose You Don’t Want
To?  What Then?

 A large back-and-forth arms race trying to prevent 
memory errors from being exploitable for code 
injection

 An attacker can still use them to crash the program
 An attempt at defense-in-depth

 Stack Canaries
 Non-Executable Pages
 Address-Space-Layout-Randomization + SelfRando
 Control Flow Integrity



Computer Science 161 Summer 2019 Dutra and Jawale

Stack Canaries…

 Goal is to protect the return 
pointer from being overwritten by 
a stack buffer…

 When the program starts up, 
create a random value

 The “stack canary”

 When returning in a function
 First check the canary against the stored 

value

Saved Return Addr

Saved Frame Ptr

🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦

data...

data...

data...

data...

aoeu
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How To (Not) Kill the Canary…

 Find out what the canary is!
 A format string vulnerability
 An information leak elsewhere that dumps it
 Now can overwrite the canary with itself…

 Write around the canary
 Format string vulnerabilities

 Overflow in the heap, or a C++ object on the stack
 QED: Bypassable but raises the bar
 A simple stack overflow doesn’t work anymore:

Need something a bit more robust
 Minor but nearly negligible performance impact
 First deployed in 1997 with “StackGuard”

 It requires a compiler flag to enable on Linux, but…
 THERE IS NO EXCUSE NOT TO HAVE THIS ENABLED!!!  I'M LOOKING AT YOU 

CISCO ASA!
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And Canary Entropy…

 On 32b x86 the canary is a 32b value
 It is 64b on x86-64

 One byte of the canary is always x0
 Since some buffer overflows can’t include null bytes: 

e.g. if the vulnerability is in a bad call to strcpy

 But this means you can (possibly) brute-force the 
canary

 It would only requires an expected 224 tries or so!
 Think of this as “you need to try ~16 million times”:

210 ~= 103
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Non-Executable Pages

 We remember how the TLB/page table has multiple bits:
 R -> Can Read

W -> Can Write
X -> Can Execute

 So lets maintain W xor X as a global property
 Now you can’t write code to the stack or heap

 Unfortunately that is insufficient
 “Return into libc”:  Just set up the stack and “return” to exec
 Especially easy on x86 since arguments are passed on the stack

 “Return Oriented Programming”
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Return Oriented Programming...

 The deep-voodoo idea:
 Given a code library, find a set of fragments (gadgets) that when called 

together execute the desired function
 The "ROP Chain"

 Inject onto the stack a sequence of saved "return addresses" that will 
invoke this 

 The lazy-hacker idea:
 Somebody else did the deep voodoo already.  I can just google for "ROP 

compiler" and download an existing tool

 Tools democratize things for attacker's:
 Yesterday's Ph.D. thesis or academic paper is today's Intelligence 

Agency tool and tomorrow's Script Kiddie download
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W^X is Somewhat Ubiquitous As Well:
Playing games with the page table...
 The OS enforces a simple rule:

By default, a memory page may be writeable or executable but 
not both!

 Effectively no performance impact
 Synergistic interaction with ASLR

 Does break some code…
 Stuff which dynamically generates code on the fly and doesn’t know about W^X. 

 So basically stuff that deserves to break
 FreeBSD deployed in 2003, Windows in 2004
 But don’t always have apps supporting it!

 Yet still often not ubiquitous on embedded systems
 See “Internet of Shit”, Cisco ASA security appliances…
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Address Space Layout Randomization

 Start things more randomly
 Especially on 64b operating systems with 64b memory space:

64b operating systems tend to be significantly harder to exploit

 Randomly relocate everything:
 Every library, the start of the stack & heap, etc…
 With 64b of space you have lots of entropy
 Everything needs to be relocatable anyway:

Modern systems use relocatable code and link at runtime

 32b?  Not-so-much

 When combined with W^X, need an information leak 
 Often a separate vulnerability, such as a way to find the address of a function
 To find the magic offset needed to modify your ROP chain
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These Defenses-In-Depth in Practice...

 Apple iOS uses ASLR in the kernel and userspace, W^X whenever 
possible

 All applications are sandboxed to limit their damage: The kernel is the TCB

 The "Trident" exploit was used by a spyware vendor, the NSO group, to 
exploit iPhones of targets

 So to remotely exploit an iPhone, the NSO group's exploit had to...
 Exploit Safari with a memory corruption vulnerability
 Gains remote code execution within the sandbox: write to a R/W/X page as part of the JavaScript JIT

 Exploit a vulnerability to read a section of the kernel stack
 Saved return address & knowing which function called breaks the ASLR

 Exploits a vulnerability in the kernel to enable code execution

 Full details: 
https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-
technical-details.pdf
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Reasoning About
Memory Safety

 Memory Safety: No accesses to undefined memory
 "Undefined" is with respect to the semantics of the programming 

language

 Read Access:
 An attacker can read memory that he isn't supposed to

 Write Access:
 An attacker can write memory that she isn't supposed to

 Execute Access:
 An attacker can transfer control flow to memory that they isn't 

supposed to
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Reasoning About Safety

 How can we have confidence that our code executes in a safe (and 
correct, ideally) fashion?

 Approach: build up confidence on a function-by-function / module-by-
module basis

 Modularity provides boundaries for our reasoning:
 Preconditions: what must hold for function to operate correctly
 Postconditions: what holds after function completes

 These basically describe a contract for using the module
 Notions also apply to individual statements (what must hold for 

correctness; what holds after execution)
 Stmt #1’s postcondition should logically imply Stmt #2’s precondition
 Invariants: conditions that always hold at a given point in a function (this particularly 

matters for loops)
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int deref(int *p) {
    return *p;
}

Precondition?
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/* requires: p != NULL 
             (and p a valid pointer) */
int deref(int *p) {
    return *p;
}

Precondition: what needs to hold for function to 
operate correctly.

Needs to be expressed in a way that a person writing 
code to call the function knows how to evaluate.
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void *mymalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror("malloc"); exit(1); }
    return p;
}

Postcondition?
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/* ensures: retval != NULL (and a valid 
pointer) */
void *mymalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror("malloc"); exit(1); 
}
    return p;
} Postcondition: what the function promises will 

hold upon its return.

Likewise, expressed in a way that a person using 
the call in their code knows how to make use of.
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

Precondition?
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access?
2) Write down precondition it requires
3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* ?? */
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires?
3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&
                 0 <= i && i < size(a) */
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function 

size(X) = number of elements allocated for region pointed to by X
size(NULL) = 0

This is an abstract notion, not something built into C (like sizeof). 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&
                 0 <= i && i < size(a) */
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 
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Let’s simplify, given that a never changes.

int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&
                 0 <= i && i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 
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?

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 

/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */
    total += a[i];
  return total;
}
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General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 

✓
/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */
    total += a[i];
  return total;
}
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✓

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: i < size(a) */
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 

?
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}General correctness proof strategy for memory safety:
1) Identify each point of memory access
2) Write down precondition it requires
3) Propagate requirement up to beginning of function? 

?
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?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}

What about i < n ?  

?
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}

?

What about i < n ?  That follows from the loop condition.
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}

At this point we know the proposed invariant will always hold...
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… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant: a != NULL &&
       0 <= i && i < n && n <= size(a) */
    total += a[i];
  return total;
}A more complicated loop might need us to use induction:

Base case: first entrance into loop.
     Induction: show that postcondition of last statement of 

                  loop, plus loop test condition, implies invariant.
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int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}
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/* requires: a != NULL &&
     size(a) >= n &&
            ???                        */
int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}
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/* requires: a != NULL &&
     size(a) >= n &&
     for all j in 0..n-1, a[j] != NULL */
int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}

This may still be memory safe
but it can still have undefined behavior!
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char *tbl[N]; /* N > 0, has type int */

int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
  int h = 17;                 /* 0 <= h */
  while (*s)                 
    h = 257*h + (*s++) + 3;  
  return h % N; 
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
  int h = 17;                 /* 0 <= h */
  while (*s)                  /* 0 <= h */
    h = 257*h + (*s++) + 3; 
  return h % N; 
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}



Computer Science 161 Summer 2019 Dutra and Jawale

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
  int h = 17;                 /* 0 <= h */
  while (*s)                  /* 0 <= h */
    h = 257*h + (*s++) + 3;   /* 0 <= h */
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
  int h = 17;                 /* 0 <= h */
  while (*s)                  /* 0 <= h */
    h = 257*h + (*s++) + 3;   /* 0 <= h */
  return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
  int h = 17;                 /* 0 <= h */
  while (*s)                  /* 0 <= h */
    h = 257*h + (*s++) + 3;   /* 0 <= h */
  return h % N; /* 0 <= retval < N */ 
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: 0 <= retval && retval < N */
  unsigned int hash(char *s) {
  unsigned int h = 17;          /* 0 <= h */
  while (*s)                    /* 0 <= h */
    h = 257*h + (*s++) + 3;     /* 0 <= h */
  return h % N;        /* 0 <= retval < N */ 
}

bool search(char *s) {
  unsigned int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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Writing correct and safe C code is hard

 Do you honestly think a human is going to go through this 
process for all their code?

 Because that is what it takes to prevent undefined memory behavior in C or 
C++

 Instead, you could use a safe language
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Why does software have vulnerabilities?

 Programmers are humans.
And humans make mistakes.

 Use tools
 

 Programmers often aren’t security-aware.
 Learn about common types of security flaws.

 

 Programming languages aren’t designed 
well for security.

 Use better languages (Java, Python, …).
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Testing for Software Security Issues

 What makes testing a program for security problems difficult?
 We need to test for the absence of something
 Security is a negative property!

 “nothing bad happens, even in really unusual circumstances”

 Normal inputs rarely stress security-vulnerable code

 How can we test more thoroughly?
 Random inputs (fuzz testing)
 Mutation
 Spec-driven

 How do we tell when we’ve found a problem?
 Crash or other deviant behavior

 How do we tell that we’ve tested enough?
 Hard: but code-coverage tools can help
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Working Towards Secure Systems

 Along with securing individual components, we need 
to keep them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality
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Working Towards Secure Systems

 Along with securing individual components, we need 
to keep them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality
 Management burden:
 It never stops (the “patch treadmill”) …
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Working Towards Secure Systems

 Along with securing individual components, we need to keep 
them up to date …

 What’s hard about patching?
 Can require restarting production systems
 Can break crucial functionality
 Management burden:
 It never stops (the “patch treadmill”) …
 … and can be difficult to track just what’s needed where

 Other (complementary) approaches?
 Vulnerability scanning: probe your systems/networks for known flaws
 Penetration testing (“pen-testing”): pay someone to break into your systems …
 … provided they take excellent notes about how they did it!
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Some Approaches for
Building Secure Software/Systems
 Run-time checks
 Automatic bounds-checking (overhead)
 What do you do if check fails?

 Address randomization
 Make it hard for attacker to determine layout
 But they might get lucky / sneaky

 Non-executable stack, heap
 May break legacy code
 See also Return-Oriented Programming (ROP)

 Monitor code for run-time misbehavior
 E.g., illegal calling sequences
 But again: what do you if detected?
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Approaches for Secure Software, con’t

 Program in checks / “defensive programming”
 E.g., check for null pointer even though sure pointer will be valid
 Relies on programmer discipline

 Use safe libraries
 E.g. strlcpy, not strcpy; snprintf, not sprintf
 Relies on discipline or tools …

 Bug-finding tools
 Excellent resource as long as not many false positives

 Code review
 Can be very effective … but expensive
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Approaches for Secure Software, con’t

 Use a safe language
 E.g., Java, Python, C#, Go, Rust
 Safe = memory safety, strong typing, hardened libraries
 Installed base?  Programmer base?  Performance?

 Structure user input
 Constrain how untrusted sources can interact with the system
 Perhaps by implementing a reference monitor

 Contain potential damage
 E.g., run system components in jails or VMs
 Think about privilege separation



Computer Science 161 Summer 2019 Dutra and Jawale

Real World Security: Securing your cellphone...

 The Android Patch Model...
 "Imagine if your Windows update needed to be approved by Intel, 

Dell, and Comcast…
 Pixel/Nexus phones get regular updates
 Still need to trust Google

 iPhones get regular updates
 Still need to trust Apple

 I use a Pixel with open source Android (LineageOS)
 Open source replacement for Google Play Services: microG
 Updated every week
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