
Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Asymmetric and Public Key Signatures

Ruta Jawale

July 9, 2019

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Announcements

Homework 1 will be due today! (7/9)

Project 1 due Thursday! (7/11)

Project 1’s VM passwords are released
If you have a partner, only one submission per group

Midterm 1 in one week! (7/15)

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Hash functions constructions

Merkle-Damgard construction (used by SHA1, SHA2):

Let N be the message block size in bits. IV is some fixed
value, f is some one-way compression function.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Length extension attack

Let H be a hash function depending on Merkle-Damgard. Let
PAD be the hash function’s internal padding scheme.

An attacker can use the digest H(m1) for some unknown
message m1 of known length to calculate H(PAD(m1)‖m2) for
a message m2 of the attacker’s choosing.

SHA3 is not vulnerable to this form of attack.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Symmetric key vs. Public key encryption

Symmetric key encryption

Inconvenient: need to set up a shared, symmetric key
somehow

Efficient: bitwise operations are efficient to implement
(xor, shift), also can be parallelized

Quantum resistant: double the key size!

Public key encryption

Convenient: easy to create public/private key pairs for
each person

Inefficient: exponentiation of large integers is very slow

RSA and El Gamal are broken by quantum computers!
Shor’s algorithm breaks factorization and discrete log
assumptions.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Hybrid encryption

Hybrid encryption is where we use public key encryption to set
up a shared secret key, then we use symmetric key encryption
to encrypt messages.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

The story so far. . .

Alice wants to ask Bob on a date. She now knows that if she
wants confidentiality. . .

Alice

−−−−−−−−−−−−−−→

Bob

. . . she needs to encrypt her message!

Alice

−−−−−−−−−−−−−−→

Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Which encryption?

Alice

−−−−−−−−−−−−−−→

Bob

Let’s say Alice prefers symmetric key encryption, so she uses
Diffie-Hellman to set up a symmetric key with Bob (if she
doesn’t have one already), then uses AES-CFB.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Reminder: Alice’s security specifications

Confidentiality

only Alice and Bob should know the message

Integrity
Bob should be able to verify Alice’s message was not
modified or tampered with

If it was modified, Bob should realize it!

Authentication

Bob should be able to verify Alice sent the message

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

All about Eve

Excepting Mallory’s brief cameo (see MITM attacks), so far it’s
been all about Eve.

Eve the Eavesdropper

Likes: Reading messages
Dislikes: Confidentiality

Mallory the Manipulator

Likes: Altering messages
Dislikes: Integrity/Authenticity

Today let’s talk about Mallory!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Achieve integrity/authenticity to upset Mallory

Mallory likes to manipulate messages. How can we ensure that
Mallory can’t tamper with Alice’s correspondence? (Another

rhetorical question)

−−−−−−−→
, TAG()

Let’s send a “tag” with Alice’s message!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Types of “tags”

Signature key Verification key

Symmetric key “tag” =

same private key for signing and verifying

Asymmetric key “tag” 6=
separate public verification key and private signing key

Both types of “tags” achieve integrity/authenticity, necessary
to prevent Mallory’s plans. We’ll see both in today’s lecture.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Learning Objectives

Learn a symmetric key integrity/authenticity

MAC (ex: HMAC)

Learn asymmetric key integrity/authenticity

Digital signatures (ex: RSA signature)

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Message Authentication Codes (MACs)

Gen(1n)→ k :

Input: 1n where n is the security parameter
Output: secret key k

Sign(k,m)→ σ:

Input: secret key k and message m
Output: signature σ

Verify(k,m, σ)→ {0, 1}:
Input: secret key k , message m, and signature σ
Output: 1 on success, 0 otherwise

Important: We will write MAC (k ,m) or MACk(m) or MIC when we

mean Sign(k ,m) to avoid confusion with digital signatures!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC correctness

∀m Verify(k ,m,Sign(k,m)) = 1

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC security: unforgeability

Phases Challenger Adversary A

setup k ← Gen(1n)

signature query or
mi or (mj , σj)
←−−−−−−−−−−− for i, j ∈ poly(n)

verification query σi ← Sign(k,mi) or where (mj , σj) 6= (mi , σi)

b ← Verify(k,mj , σj)

determine win b = 1,A wins
σi or b = 0
−−−−−−−−−−−→

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC security: unforgeability

Phases Challenger Adversary A

setup k ← Gen(1n)

signature query or
mi or (mj , σj)
←−−−−−−−−−−− for i, j ∈ poly(n)

verification query σi ← Sign(k,mi) or where (mj , σj) 6= (mi , σi)

b ← Verify(k,mj , σj)

determine win b = 1,A wins
σi or b = 0
−−−−−−−−−−−→

What does (mj , σj) 6= (mi , σi) mean? Cannot submit
verification queries on signature queries. In other words, cannot
claim something signed by the challenger is a forgery of the
challenger’s signature.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC security: unforgeability

Phases Challenger Adversary A

setup k ← Gen(1n)

signature query or
mi or (mj , σj)
←−−−−−−−−−−− for i, j ∈ poly(n)

verification query σi ← Sign(k,mi) or where (mj , σj) 6= (mi , σi)

b ← Verify(k,mj , σj)

determine win b = 1,A wins
σi or b = 0
−−−−−−−−−−−→

Pr[A wins game] = negligible.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC has integrity/authenticity

Integrity

No one can forge a valid “tag” without knowing the key

So if Mallory changes Alice’s message, Mallory can’t forge
a matching “tag”

When Bob goes to verify the “tag”, he can determine if
Mallory changed Alice’s message

Authenticity

No one can forge a valid “tag” without knowing the key

So only Alice and Bob can create a correct “tag”

Knowing the key, authenticates Alice and Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Does MAC provide confidentiality?

Given just the output of a MAC, is the input to the MAC
confidential?

No, not in general. We can construct a MAC that leaks the
entire message and is still unforgeable.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

MAC has plausible deniability

In our scenario, Alice could deny that she sent the message and
claim Bob sent the message to her. A third person cannot
determine which one of them, Alice or Bob, sent the “tag”,
since both Alice and Bob know the same key.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

HMAC

Let H : {0, 1}∗ → {0, 1}n be some hash function of our choice.

We want to use this hash function to construct a MAC scheme!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Idea # 1

Let H : {0, 1}∗ → {0, 1}n be some hash function of our choice.

Gen(1n)→ k:

k
$← {0, 1}n

Sign(k ,m)→ σ:

output H(k‖m)

Verify(k ,m, σ)→ {0, 1}:

check H(k‖m)
?
= σ

if equal, output 1.
else, output 0.

What if the hash function we
use is SHA-256 or SHA-512?

Given a valid signature

σ = H(k‖m1)

adversary could forge the
signature

σ∗ = H(k‖PAD(m1)‖m2)

using length extension attack!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Idea # 1: Can easily break unforgeability

Phases Challenger Adversary A

setup k ← Gen(1n)

signature query or
verification query

m1
←−−−−−−−−−−−

H(k‖m1)← Sign(k,m1) or
H(k‖m1)

−−−−−−−−−−−→
(m∗, σ∗)

←−−−−−−−−−−− m∗ = PAD(m1)‖m2

compute σ∗ = H(k‖m∗)

using length extension

b ← Verify(k,m∗, σ∗)

determine win b = 1,A wins

Pr[A wins game] = 1.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Idea # 2

Let H : {0, 1}∗ → {0, 1}n be some hash function of our choice.

Gen(1n)→ k:

k
$← {0, 1}n

Sign(k ,m)→ σ:

output H(k‖H(k‖m))

Verify(k ,m, σ)→ {0, 1}:

check H(k‖H(k‖m))
?
= σ

if equal, output 1.
else, output 0.

Is it unforgeable?

No known length extension
attacks! The outer hash
function appears to hide the
inner hash functions’s
internal state.

However, we shouldn’t use
the same key twice.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

HMAC

Let H : {0, 1}∗ → {0, 1}n be some hash function of our choice.

HMAC(K ,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad) ‖ m))

where opad = n bit block of repeating “0x5c”

ipad = n bit block of repeating “0x36”

K ′ =

K‖“0x00” K is shorter than block size n

H(K) K is larger than block size n

K otherwise

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

HMAC

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

HMAC constructions

HMAC-SHA1

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

HMAC constructions

HMAC-SHA1

SHA1 is insecure!

HMAC-SHA256

block size: 512 bits or 64 bytes

HMAC-SHA512

block size: 1024 bits or 128 bytes

HMAC-SHA3

No length extension attack!

Could actually use Idea # 1: H(k‖m)

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Does HMAC provide confidentiality?

Yes. If the underlying hash function has pre-image resistance,
then HMAC should not leak much information about its input.

Where’s the reduction proof? Left as exercise to the reader.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Break time∼

Stand up, stretch, ask a neighbor how they’re planning to
study for the midterm.

Coming up next: public key signatures

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Digital Signatures

Gen(1n)→ (vk , sk):

Input: 1n where n is the security parameter
Output: secret signing key sk and public verification key vk

Sign(sk,m)→ σ:

Input: secret key sk , and message m
Output: signature σ

Verify(vk ,m, σ)→ {0, 1}:
Input: verification key vk , message m, and signature σ
Output: 1 on success, otherwise 0.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Digital Signatures correctness

∀m Verify(vk ,m,Sign(sk,m)) = 1

Reminder: verification key vk is public, signing key sk is private

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Digital Signatures security: unforgeability

Phases Challenger Adversary A

setup vk, sk ← Gen(1n)
vk

−−−−−−−−−−−→

signature query or
mi or (mj , σj)
←−−−−−−−−−−− for i, j ∈ poly(n)

verification query σi ← Sign(sk,mi) or where (mj , σj) 6= (mi , σi)

b ← Verify(vk,mj , σj)

determine win b = 1,A wins
σi or b = 0
−−−−−−−−−−−→

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Digital Signatures security: unforgeability

Phases Challenger Adversary A

setup vk, sk ← Gen(1n)
vk

−−−−−−−−−−−→

signature query or
mi or (mj , σj)
←−−−−−−−−−−− for i, j ∈ poly(n)

verification query σi ← Sign(sk,mi) or where (mj , σj) 6= (mi , σi)

b ← Verify(vk,mj , σj)

determine win b = 1,A wins
σi or b = 0
−−−−−−−−−−−→

Adversary A has the verification key vk . They don’t need to
ask the challenger for verification queries. They only need to
submit the forged signature.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Digital Signatures security: unforgeability

Phases Challenger Adversary A

setup vk, sk ← Gen(1n)
vk

−−−−−−−−−−−→

signature query
mi

←−−−−−−−−−−− for i ∈ poly(n)

σi ← Sign(sk,mi)
σi

−−−−−−−−−−−→

forgery
m∗, σ∗

←−−−−−−−−−−− where (m∗, σ∗) 6= (mi , σi)

b ← Verify(vk,m∗, σ∗)

determine win If b = 1,A wins

Pr[A wins game] = negligible.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Do Digital Signatures have non-repudiation?

Non-repudiation is the assurance that someone cannot deny
the validity of something. The opposite of deniability.

Can we determine whether Alice sent the message to Bob or
Bob sent the message to Alice?

Yes, depending on who’s public key / private key pairing was
used, so Digital Signatures have non-repudiation.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

RSA signatures: key generation

Reminder: verification key vk is public, signing key sk is private

Gen(1n)→ (vk , sk):

choose primes p and q

define N = p · q

choose small prime e ∈ {1, . . . ,N − 1}

compute d to satisfy e · d = 1 (mod (p − 1)(q − 1))

define vk = (N, e) and sk = d

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

RSA signatures: signature

Let H be a cryptographic hash function.

Sign(sk ,m)→ σ:

compute σ = H(m)d (mod N)

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

RSA signatures: verification

Let H be our cryptographic hash function.

Verify(vk ,m, σ)→ {0, 1}:

check H(m)
?
= σe (mod N)

if equal, output 1. else, output 0

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Is RSA signatures correct?

Gen(1n)→ (vk , sk):

choose primes p and q

define N = p · q
e ∈ {1, . . . ,N − 1}
compute d s.t. e · d = 1
(mod (p − 1)(q − 1))

vk = (N, e), sk = d

Sign(sk ,m)→ σ:

σ = H(m)d (mod N)

Verify(vk ,m, σ)→ {0, 1}:

H(m)
?
= σe (mod N)

if equal, output 1

Does Verify(vk ,m, σ) return 1?

σe (mod N) = (H(m)d (mod N))e (mod N)

= H(m)e·d (mod N) = H(m) (mod N)

by application of the Chinese Remainder Theorem.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Why hash the message?

Gen(1n)→ (vk , sk):

choose primes p and q

define N = p · q
e ∈ {1, . . . ,N − 1}
compute d s.t. e · d = 1
(mod (p − 1)(q − 1))

vk = (N, e), sk = d

Sign(sk ,m)→ σ:

σ = H(m)d (mod N)

Verify(vk ,m, σ)→ {0, 1}:

H(m)
?
= σe (mod N)

if equal, output 1

You’ll see why during Wednesday’s discussion section.

Reminder: Attend discussion sections!

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Is RSA signature unforgeable?

Assuming the hash function is secure, the RSA signature will
be unforgeable.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Can Alice just use HMAC since it has CIA?

No, remember how a “tag” is used in our scenario when Alice
wants to send a message. The message also needs to be sent
for Bob to verify!

Alice

, TAG()

−−−−−−−−−−−−−−−−−−→

Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Lucky 7 step plan

Alice still prefers symmetric keys, so she will use Diffie-Hellman
to set up two symmetric keys with Bob (if she doesn’t have
two already). One for encryption and one for “tag” generation.

Then she follows “encrypt then MAC” strategy: she first
encrypts her message using AES-CFB and then appends a tag
of the ciphertext using HMAC-SHA256.

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Let’s put it together

Alice Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 1: Diffie-Hellman to share encryption key

Alice

AES-CFB key:

Diffie-Hellman key
exchange

−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

...
←−−−−−−−−−−−−−−

Bob

AES-CFB key:

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 2: Diffie-Hellman to share MAC key

Alice

AES-CFB key:

HMAC key:

Diffie-Hellman key
exchange

−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

...
←−−−−−−−−−−−−−−

Bob

AES-CFB key:

HMAC key:

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 3: Encrypt the message using AES-CFB

Alice

Enc(,) =

Bob

AES-CFB key:

HMAC key:

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 4: Compute the “tag” using HMAC

Alice

Enc(,) =

MAC(,)

Bob

AES-CFB key:

HMAC key:

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 5: Send message via “Encrypt then MAC”

Alice

AES-CFB key:

HMAC key:

, TAG()
−−−−−−−−−−−−−−→

Bob

AES-CFB key:

HMAC key:

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 6: Bob will verify the “tag”

Alice

AES-CFB key:

HMAC key:

Bob

Verify(, , TAG())
?
= 1

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Step # 7: Bob will decrypt the message

Alice

AES-CFB key:

HMAC key:

Bob

Dec(,) =

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Fin∼

Alice
Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Epilogue

Since our symmetric key systems, such as MAC, have
deniability. . .

Many years later, Bob still jokingly insists that he was the one
who asked Alice out first!

Alice

, TAG()
←−−−−−−−−−−−−−−

Bob

Announcements

Review

Objectives

MAC
HMAC

Digital Signatures
RSA Signatures

Conclusion

Summary

Alice learned today that . . .

If she wants integrity and authentication,

she can use HMAC or RSA Signatures

How to finally ask Bob on a date!

“Encrypt then MAC”

	Announcements
	Review
	Objectives
	MAC
	HMAC

	Digital Signatures
	RSA Signatures

	Conclusion
	Summary

