
Computer Science 161 Summer 2019 Dutra and Jawale

Practical Crypto,
Random Numbers,

CryptoFails



Computer Science 161 Summer 2019 Dutra and Jawale

Cryptography is nightmare magic 
math that cares what kind of pen 
you use -@swiftonsecurity



Computer Science 161 Summer 2019 Dutra and Jawale

Announcements!

 Midterm 1 Monday, 5-7 pm
 Bring your student ID

 Project 1 due tomorrow
 Make only 1 submission per group!



Computer Science 161 Summer 2019 Dutra and Jawale

In Practice: Session Keys...

 You use the public key algorithm to encrypt/agree on a session 
key..

 And then encrypt the real message with the session key
 You never actually encrypt the message itself with the public key 

algorithm

 Why?



Computer Science 161 Summer 2019 Dutra and Jawale

How to prevent a MitM attack?

 Digital signatures?
 If Bob knows Alice's key, and Alice knows Bob's...
 How will be "next time"

 Alice doesn't just send a message to Bob...
 But creates a random key k...
 Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)

 Only Bob can decrypt the message, and Bob can 
verify the message came from Alice

 So Mallory is SOL!



Computer Science 161 Summer 2019 Dutra and Jawale

Signatures Enable
Ephemeral Diffie/Hellman
 Bob knows (somehow) Alice's public key...
 We will find out how later when we talk about certificates
 Or, as in the project, the "trusted keystore" can tell you Alice's 

public key

 Now Alice doesn't just send ga, but also sign(ga,Kalice)
 As a consequence, now Mallory can't play the MitM!

 And yet we have "forward secrecy"
 Even if Eve gets Alice's private key, she can't decrypt old messages 

or new messages
 Even if Malory gets Alice's private key, he can only intercept new 

messages as a man-in-the-middle



Computer Science 161 Summer 2019 Dutra and Jawale

Exercise:
Send me an encrypted message
 Make sure no one else can read the message
 Use any communication method you want

 How can you find my public key?
 How can you be sure it’s me?
 How can I be sure it’s you?

 How can I respond in encrypted form?
 Does the communication have forward secrecy?
 Does it have integrity? Authentication?
 Is it deniable? Or non-repudiable?



Computer Science 161 Summer 2019 Dutra and Jawale

Cryptofail: MAC then Encrypt or 
Encrypt then MAC?
 You should never use the same key for the MAC and the Encryption
 Some MACs will break completely if you reuse the key
 Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a 

bad idea

 MAC then Encrypt:
 Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

 Encrypt and MAC:
 Compute C = E(M,Kencrypt), T = MAC(M,Kmac), 

send C||T

 Encrypt then MAC
 Compute C = E(M,Kencrypt), T = MAC(C,Kmac), 

send C||T



Computer Science 161 Summer 2019 Dutra and Jawale

Cryptofail: MAC then Encrypt or 
Encrypt then MAC?

 MAC then Encrypt  Encrypt and MAC  Encrypt then MAC



Computer Science 161 Summer 2019 Dutra and Jawale

Padding Oracle Attack 

 Can deterministically modify last padding byte



Computer Science 161 Summer 2019 Dutra and Jawale

The TLS 1.0 "Lucky13" Attack:
"F-U, This is Cryptography"
 HTTPS/TLS uses MAC then Encrypt
 With CBC encryption

 The Lucky13 attack changes the cipher text in an attempt to 
discover the state of a byte

 But can't predict the MAC
 The TLS connection retries after each failure so the attacker can try multiple times
 Goal is to determine the status each byte in the authentication cookie which is in a known 

position

 It detects the timing of the error response
 Which is different if the guess is right or wrong
 Even though the underlying algorithm was "proved" secure!

 So always do Encrypt then MAC since, 
once again, it is more mistake tolerant



Computer Science 161 Summer 2019 Dutra and Jawale

CryptoFail:
Side Channels

 Anything outside the normal message
 The time it takes to decrypt a message (or even just report an 

error)
 The power it takes to decrypt a message
 The cache state of a processor after another process completes 

encryption
 Electromagnetic radiation when encrypting
 TEMPEST attacks

 These are often how you break crypto systems in 
practice



Computer Science 161 Summer 2019 Dutra and Jawale

A Lot of Uses for
Random Numbers...

 The key foundation for all modern cryptographic systems 
is often not encryption but these "random" numbers!

 So many times you need to get something random:
 A random cryptographic key
 A random initialization vector
 A random "nonce" (use-once item)
 A unique identifier
 Stream Ciphers

 If an attacker can predict a random number things can 
catastrophically fail



Computer Science 161 Summer 2019 Dutra and Jawale

Breaking Slot Machines

 Some casinos experienced unusual bad 
"luck"

 The suspicious players would wait and then all of a 
sudden try to play

 The slot machines have predictable pRNG
 Which was based on the current time & a seed

 So play a little...
 With a cellphone watching
 And now you know when to press "spin" to be more 

likely to win

 Oh, and this never affected Vegas!
 Evaluation standards for Nevada slot machines 

specifically designed to address this sort of issue



Computer Science 161 Summer 2019 Dutra and Jawale

Breaking Bitcoin Wallets

 blockchain.info supports "web 
wallets"

 Javascript that protects your Bitcoin

 The private key for Bitcoin needs to be 
random

 Because otherwise an attacker can spend the 
money

 An "Improvment" [sic] to the RNG 
reduced the entropy (the actual 
randomness)

 Any wallet created with this improvment was 
brute-forceable and could be stolen



Computer Science 161 Summer 2019 Dutra and Jawale

TRUE Random Numbers

 True random numbers generally require a physical process
 Common circuit is an unusable ring oscillator built into the CPU
 It is then sampled at a low rate to generate true random bits which are then fed into a 

pRNG on the CPU

 Other common sources are human 
activity measured at very fine time scales

 Keystroke timing, mouse movements, etc
 "Wiggle the mouse to generate entropy for a key"

 Network/disk activity which is often human driven

 More exotic ones are possible:
 Cloudflare has a wall of lava lamps that are recorded

by a HD video camera which views the lamps through a 
rotating prism: It is just one source of the randomness



Computer Science 161 Summer 2019 Dutra and Jawale

Combining Entropy

 The general procedure is to combine various sources 
of entropy

 The goal is to be able to take multiple crappy 
sources of entropy

 Measured in how many bits:
A single flip of a true random coin is 1 bit of entropy

 And combine into a value where the entropy is the minimum of the 
sum of all entropy sources (maxed out by the # of bits in the hash 
function itself)

 N-1 bad sources and 1 good source -> good pRNG state



Computer Science 161 Summer 2019 Dutra and Jawale

Pseudo Random Number Generators
(aka Deterministic Random Bit Generators)
 Unfortunately one needs a lot of random numbers in cryptography
 More than one can generally get by just using the physical entropy source

 Enter the pRNG or DRBG
 If one knows the state it is entirely predictable
 If one doesn't know the state it should be indistinguishable from a random string

 Three operations
 Instantiate: (aka Seed) Set the internal state based on the real entropy sources
 Reseed: Update the internal state based on both the previous state and additional entropy
 The big different from a simple stream cipher

 Generate: Generate a series of random bits based on the internal state
 Generate can also optionally add in additional entropy

 instantiate(entropy) 
reseed(entropy)
generate(bits, {optional entropy})



Computer Science 161 Summer 2019 Dutra and Jawale

Properties for the pRNG

 Can a pRNG be truly random?
 No.  For seed length s, it can only generate at most 2s distinct 

possible sequences.

 A cryptographically strong pRNG “looks” truly 
random to an attacker

 Attacker cannot distinguish it from a random sequence:
If the attacker can tell a sufficiently long bitstream was generated 
by the pRNG instead of a truly random source it isn't a good pRNG



Computer Science 161 Summer 2019 Dutra and Jawale

Prediction and Rollback Resistance

 A pRNG should be predictable only if you know the internal state
 It is this predictability which is why its called "pseudo"

 If the attacker does not know the internal state
 The attacker should not be able to distinguish a truly random string from one generated 

by the pRNG

 It should also be rollback-resistant
 Even if the attacker finds out the state at time T, they should not be able to determine 

what the state was at T-1
 More precisely, if presented with two random strings, one truly random and one generated 

by the pRNG at time T-1, the attacker should not be able to distinguish between the two

 Not all pRNGs have rollback resistance: 
it isn't technically required of a pRNG.  
EG, CTR mode with a random key doesn’t have rollback resistance



Computer Science 161 Summer 2019 Dutra and Jawale

Why "Rollback Resistance" is Essential

 Assume attacker, at time T, is able to obtain all the internal 
state of the pRNG

 How?  E.g. the pRNG screwed up and instead of an IV, released the internal 
state, or the pRNG is bad...

 Attacker observes how the pRNG was used
 T-1 = Session key

T0 = Nonce

 Now if the pRNG doesn't resist
rollback, and the attacker gets the 
state at T0, attacker can know the 
session key!  And we are back to...



Computer Science 161 Summer 2019 Dutra and Jawale

More on Seeding and Reseeding

 Seeding should take all the different physical 
entropy sources available

 If one source has 0 entropy, it must not reduce the entropy of the 
seed

 We can shove a whole bunch of low-entropy sources together and 
create a high-entropy seed

 Reseeding adds in even more entropy
 F(internal_state, new material)
 Again, even if reseeding with 0 entropy, it must not reduce the 

entropy of the seed



Computer Science 161 Summer 2019 Dutra and Jawale

Probably the best pRNG/DRBG:
HMAC_DRBG

 Generally believed to be the best
 Accept no substitutes!

 Two internal state registers, V and K
 Each the same size as the hash function's output

 V is used as (part of) the data input into HMAC, while K is 
the key

 If you can break this pRNG you can either break the 
underlying hash function or break a significant 
assumption about how HMAC works

 Yes, security proofs sometimes are a very good thing and actually do work



Computer Science 161 Summer 2019 Dutra and Jawale

HMAC_DRBG
Update

 Used for both instantiate 
(state.k = state.v = 0) 
and reseed 
(keep state.k and 
state.v)

 Designed so that even if 
the attacker controls the 
input but doesn't know k:
The attacker should not be 
able to predict the new k 

function hmac_drbg_update (state, input) {
  state.k = hmac(state.k, state.v || 0x00
                          || input)
  state.v = hmac(state.k, state.v)
  state.k = hmac(state.k, state.v || 0x01
                          || input)
  state.v = hmac(state.k, state.v)
}



Computer Science 161 Summer 2019 Dutra and Jawale

HMAC_DRBG
Generate
 The basic generation function
 Remarks:
 It requires one HMAC call per blocksize-bits of 

state
 Then two more HMAC calls to update the 

internal state

 Prediction resistance:
 If you can distinguish new K from random 

when you don't know old K:
You've distinguished HMAC from a random 
function!
Which means you've either broken the hash or 
the HMAC construction

 Rollback resistance:
 If you can learn old K from new K and V:

You've reversed the hash function!

function hmac_drbg_generate (state, n, input) 
{
  tmp = ""
  while(len(tmp) < N){
     state.v = hmac(state.k,state.v)
     tmp = tmp || state.v
  }
  if input == null {
  // Update state with no input
    state.k = hmac(state.k, state.v || 0x00)
    state.v = hmac(state.k, state.v)
  } else {
    hmac_drbg_update(state, input);
  }
  // Return the first N bits of tmp
  return tmp[0:N]
}



Computer Science 161 Summer 2019 Dutra and Jawale

UUID: Universally Unique Identifiers

 You got to have a "name" for something...
 EG, to store a location in a filesystem

 Your name must be unique...
 And your name must be unpredictable!

 Just chose a random value!
 UUID: just chose a 128b random value
 Well, it ends up being a 122b random value with some signaling information

 A good UUID library uses a cryptographically-secure pRNG that is properly 
seeded

 Often written out in hex as:
 00112233-4455-6677-8899-aabbccddeeff



Computer Science 161 Summer 2019 Dutra and Jawale

What Happens When The Random Numbers
Goes Wrong...
 Insufficient Entropy:
 Random number generator is seeded without enough entropy

 Debian OpenSSL CVE-2008-0166
 In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 

'fixed' how OpenSSL seeds random numbers
 Because the code, as written, caused Purify and Valgrind to complain 

about reading uninitialized memory

 Unfortunate cleanup reduced the pRNG's seed to be just the 
process ID

 So the pRNG would only start at one of ~30,000 starting points

 This made it easy to find private keys
 Simply set to each possible starting point and generate a few 

private keys
 See if you then find the corresponding public keys anywhere 

on the Internet
http://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago



Computer Science 161 Summer 2019 Dutra and Jawale

And Now Lets
Add Some RNG Sabotage...

 The Dual_EC_DRBG
 A pRNG pushed by the NSA behind the scenes based on Elliptic Curves

 It relies on two parameters, P and Q on an elliptic curve
 The person who generates P and selects Q=eP can predict the 

random number generator, regardless of the internal state

 It also sucked!
 It was horribly slow and even had subtle biases that shouldn't exist in 

a pRNG:
You could distinguish the upper bits from random!

 Now this was spotted fairly early on...
 Why should anyone use such a horrible random number generator?



Computer Science 161 Summer 2019 Dutra and Jawale

Well, anyone not paid that is...

 RSA Data Security accepted 30 pieces of silver 
$10M from the NSA to implement Dual_EC in their 
RSA BSAFE library

 And silently make it the default pRNG

 Using RSA's support, it became a NIST standard
 And inserted into other products...

 And then the Snowden revelations
 The initial discussion of this sabotage in the 

NY Times just vaguely referred to a Crypto 
talk given by Microsoft people...

 That everybody quickly realized referred to Dual_EC



Computer Science 161 Summer 2019 Dutra and Jawale

But this is insanely powerful...

 It isn't just forward prediction but being able to run the generator 
backwards!

 Which is why Dual_EC is so nasty:  
Even if you know the internal state of HMAC_DRBG it has rollback resistance!

 In TLS (HTTPS) and Virtual Private Networks you have a motif of:
 Generate a random session key
 Generate some other random data that's 

public visible
 EG, the IV in the encrypted channel, or the "random" 

nonce in TLS
 Oh, and an NSA sponsored "standard" to spit out even more

"random" bits!

 If you can run the random number
generator backwards, you can find the 
session key



Computer Science 161 Summer 2019 Dutra and Jawale

It Got Worse:
Sabotaging Juniper
 Juniper also used Dual_EC in their Virtual Private Networks
 "But we did it safely, we used a different Q"

 Sometime later, someone else noticed this...
 "Hmm, P and Q are the keys to the backdoor...

Lets just hack Juniper and rekey the lock!"
 And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"

 Sometime later, someone else goes...
 "Hey, lets add an ssh backdoor"

 Sometime later, Juniper goes
 "Whoops, someone added an ssh backdoor, lets see 

what else got F'ed with, oh, this # in the pRNG"

 And then everyone else went
 "Ohh, patch for a backdoor.  Lets see what got fixed.  

Oh, these look like Dual_EC parameters..."



Computer Science 161 Summer 2019 Dutra and Jawale

Sabotaging "Magic Numbers"
In General

 Many cryptographic implementations depend on "magic" 
numbers

 Parameters of an Elliptic curve
 Magic points like P and Q
 Particular prime p for Diffie/Hellman
 The content of S-boxes in block cyphers

 Good systems should cleanly 
describe how they are generated

 In some sound manner (e.g. AES's S-boxes)
 In some "random" manner defined by a pRNG with a specific seed



Computer Science 161 Summer 2019 Dutra and Jawale

Because Otherwise You
Have Trouble...
 Not only Dual-EC's P and Q
 Recent work: 1024b Diffie/Hellman moderately impractical...
 But you can create a sabotaged prime that is 1/1,000,000 the work to crack!

And the most often used "example" p's origin is lost in time!

 It can cast doubt even when a design is solid:
 The DES standard was developed by IBM but with input from the NSA
 Everyone was suspicious about the NSA tampering with the S-boxes...
 They did: The NSA made them stronger against

an attack they knew but the public didn't

 The NSA-defined elliptic curves P-256 and P-384



Computer Science 161 Summer 2019 Dutra and Jawale

Snake Oil Cryptography:
Craptography

 "Snake Oil" refers to 19th century
fraudulent "cures"

 Promises to cure practically every ailment
 Sold because there was no regulation and 

no way for the buyers to know

 The security field is practically full of Snake Oil 
Security and Snake Oil Cryptography

 https://www.schneier.com/crypto-gram/archives/1999/0215.html#sn
akeoil

https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil
https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil


Computer Science 161 Summer 2019 Dutra and Jawale

Anti-Snake Oil:
NSA's CNSA cryptographic suite
 Successor to "Suite B"
 Unclassified algorithms approved for Top Secret:
 There is nothing higher than TS, you have "compartments" but those are access control 

modifiers
 https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

 Symmetric key, AES: 256b keys
 Hashing, SHA-384
 RSA/Diffie Helman: >= 3072b keys
 ECDHE/ECDSA: 384b keys over curve P-384

 In an ideal world, I'd only use those parameters, 
 But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic 

curves, plus the DJB curves and cyphers (ChaCha20)
 NSA has a requirement where a Top Secret communication captured today should 

not be decryptable by an adversary 40 years from now!



Computer Science 161 Summer 2019 Dutra and Jawale

Snake Oil Warning
Signs...
 Amazingly long key lengths
 The NSA is super paranoid, and even they don't use >256b keys for symmetric key or 

>4096b for RSA/DH public key
 So if a system claims super long keys, be suspicious

 New algorithms and crazy protocols
 There is no reason to use a novel block cipher, hash, public key algorithm, or protocol
 Even a "post quantum" public key algorithm should not be used alone:

Combine it with a conventional public key algorithm

 Anyone who roles their own is asking for trouble!
 EG, Telegram
 "It's like someone who had never seen cake but heard it described tried to bake one. 

With thumbtacks and iron filings."  Matthew D Green
 "Exactly! GLaDOS-cake encryption. 

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan



Computer Science 161 Summer 2019 Dutra and Jawale

Lots in the Cryptocurrency Space…

 The biggest being IOTA (aka IdiOTA), a “internet of 
Things” cryptocurrency…

 That doesn’t use public key signatures, instead a hash based scheme 
that means you can never reuse a key…

 And results in 10kB+ signatures!  (Compared with RSA which is <450B, and 
those are big)

 That has created their own hash function…
 That was quickly broken!

 That is supposed to end up distributed…
 But relies entirely on their central authority

 That uses trinary math!?! 
 Somehow claiming it is going to be better, but you need entirely new 

processors…



Computer Science 161 Summer 2019 Dutra and Jawale

Snake Oil Warning
Signs...

 "One Time Pads"
 One time pads are secure, if you actually have a true one time pad
 But almost all the snake oil advertising it as a "one time pad" isn't!
 Instead, they are invariably some wacky stream cypher

 Gobbledygook, new math, and "chaos"
 Kinda obvious, but such things are never a good sign

 Rigged "cracking contests"
 Usually "decrypt this message" with no context and no structure
 Almost invariably a single or a few unknown plaintexts with nothing else

 Again, Telegram, I'm looking at you here!



Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
No Public Keys
 The APCO Project 25 radio protocol
 Supports encryption on each traffic group
 But each traffic group uses a single shared key

 All fine and good if you set everything up at once...
 You just load the same key into all the radios
 But this totally fails in practice: what happens when you need to coordinate with 

somebody else who doesn't have the same keys?

 Made worse by bad user interface and users who think rekeying 
frequently is a good idea

 If your crypto is good, you shouldn't need to change your crypto keys

 "Why (Special Agent) Johnny (Still) Can't Encrypt
 http://www.crypto.com/blog/p25



Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
PGP
 I hate Pretty Good Privacy
 But not because of the cryptography...

 The PGP cryptography is decent...
 Except it lacks "Forward Secrecy": 

If I can get someone's private key I can decrypt all their old messages

 The metadata is awful...
 By default, PGP says who every message is from and to
 It makes it much faster to decrypt

 It is hard to hide metadata well, but its easy to do things better than what PGP does

 It is never transparent
 Even with a "good" client like GPG-tools on the Mac
 And I don't have a client on my cellphone



Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
How do you find someone's PGP key?

 Go to their personal website?
 Check their personal email?
 Ask them to mail it to you
 In an unencrypted channel?

 Check on the MIT keyserver?
 And get the old key that was mistakenly uploaded and can never be 

removed?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

