
Computer Science 161 Summer 2019 Dutra and Jawale

Good/Bad Crypto (cont.)
& Bitcoin

Computer Science 161 Summer 2019 Dutra and Jawale

Announcements!

 Midterm 1 Monday, 5-7 pm
 Bring your student ID

 Project 1 due tonight
 Make only 1 submission per group!

Computer Science 161 Summer 2019 Dutra and Jawale

Exercise:
Send me an encrypted message
 Make sure no one else can read the message
 Use any communication method you want

 How can you find my public key?
 How can you be sure it’s me?
 How can I be sure it’s you?

 How can I respond in encrypted form?
 Does the communication have forward secrecy?
 Does it have integrity? Authentication?
 Is it deniable? Or non-repudiable?

Computer Science 161 Summer 2019 Dutra and Jawale

Signal
Authenticated Diffie-Hellman with Deniability

 Alice has long term secret key A, generates ephemeral
secret key a.

 Bob has long term secret key B, generates ephemeral
secret key b.

Computer Science 161 Summer 2019 Dutra and Jawale

Signal
Authenticated Diffie-Hellman with Deniability

Alice sends gA and ga

Bob sends gB and gb

Computer Science 161 Summer 2019 Dutra and Jawale

Signal
Authenticated Diffie-Hellman with Deniability

Both compute KDF(gAb, gaB, gab)

Computer Science 161 Summer 2019 Dutra and Jawale

SHA3 (Keccak)
Cryptographic Sponge Construction

Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
PGP
 I hate Pretty Good Privacy
 But not because of the cryptography...

 The PGP cryptography is decent...
 Except it lacks "Forward Secrecy":

If I can get someone's private key I can decrypt all their old messages

 The metadata is awful...
 By default, PGP says who every message is from and to
 It makes it much faster to decrypt

 It is hard to hide metadata well, but its easy to do things better than what PGP does

 It is never transparent
 Even with a "good" client like GPG-tools on the Mac
 And I don't have a client on my cellphone

Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
How do you find someone's PGP key?

 Go to their personal website?
 Check their personal email?
 Ask them to mail it to you
 In an unencrypted channel?

 Check on the MIT keyserver?
 And get the old key that was mistakenly uploaded and can never be

removed?

Computer Science 161 Summer 2019 Dutra and Jawale

Unusability:
openssl libcrypto and libssl

 OpenSSL is a nightmare...
 A gazillion different little functions needed to

do anything

 So much of a nightmare that I'm not
going to bother learning it to teach
you how bad it is

 This is why the old python-based project didn't
give this raw even though it used OpenSSL
under the hood

 But just to give you an idea:
The command line OpenSSL utility
options:

Computer Science 161 Summer 2019 Dutra and Jawale

An Old Cryptofail:
Too Short Keys
 During WWII, the Germans used enigma:
 System was a "rotor machine": A series of rotors,

with each rotor permuting the alphabet and every
keypress incrementing the settings

 Key was the selection of rotors, initial settings, and a
permutation plugboard

 Which is not all that much entropy!

 The British built a system (the "Bombe")
to brute-force Enigma

 Required a known-plaintext (a "crib") to verify
decryption: e.g. the weather report

 Sometimes the brits would deliberately "seed" a
naval minefield for a chosen-plaintext attack

Computer Science 161 Summer 2019 Dutra and Jawale

Another Cryptofail:
Two-Time Pad
 What if we reuse a key K jeeeest once in a One Time Pad?
 Alice sends C = E(M, K) and C' = E(M', K)
 Eve observes M ⊕ K and M' ⊕ K
 Can she learn anything about M and/or M' ?

 Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K)
= (M ⊕ M') ⊕ (K ⊕ K)
= (M ⊕ M') ⊕ 0
= M ⊕ M'

 Now she knows which bits in M match bits in M'
 And if Eve already knew M, now she knows M'!
 Even if not, Eve can guess M and ensure that M' is consistent

Computer Science 161 Summer 2019 Dutra and Jawale

VENONA:
Pad Reuse in the Real World
 The Soviets used one-time pads for

communication from their spies in the US
 After all, it is provably secure!

 During WWII, the Soviets started reusing
key material

 Uncertain whether it was just the cost of generating pads or what...

 VENONA was a US cryptanalysis project designed to
break these messages

 Included confirming/identifying the spies targeting the
US Manhattan project

 Project continued until 1980!

 Not declassified until 1995!
 So secret even President Truman wasn't informed about it.
 But the Soviets found out about it in 1949, but their one-time

pad reuse was fixed after 1948 anyway

Computer Science 161 Summer 2019 Dutra and Jawale

2-Time Pad Cryptofail
Remarkably Common

 Actually happens more often than you'd like...
 Because if you use CTR mode and repeat the IV, you are doing the

same thing!

 Recently discovered in WiFi implementations!
 WiFi breaks up the message into a series of packets, each packet is

encrypted separately

Computer Science 161 Summer 2019 Dutra and Jawale

Cryptofail Hotness:
KRACK attack...
 To actually encrypt the individual packets: IV of a packet is

{Agreed IV || packet counter}
 Thus for each packet you only need to send the packet counter (48 bits) rather than the full IV

(128b)

 Multiple different modes
 One common one is CCM (Counter with CBC-MAC)
 MAC the data with CBC-MAC

Then encrypt with CTR mode

 The highest performance is GCM (Galois/Counter Mode)

 KRACK:
 "Hey WiFi Device, reset your packet counter"

"Okeydoke"

 But if you thought CTR mode was bad on IV reuse...
 GCM is worse: A couple of reused IVs can reveal enough information to forge the authentication!

 Discovered a year and a half ago, fairly quickly patch, but still!

Computer Science 161 Summer 2019 Dutra and Jawale

GCM...

 GCM is like CTR mode with a twist...
 The confidentiality is pure CTR mode
 The "Galois" part is a hash of the cipher

text
 The only secret part being the "Auth Data"

 Reuse the IV, what happens?
 Not only do you have CTR mode loss of

confidentiality...
 But if you do it enough, you lose

confidentiality on the Auth Data...
 So you lose the integrity that GCM

supposedly provided!

Computer Science 161 Summer 2019 Dutra and Jawale

DSA Signatures...

 Based on Diffie-Hellman
 Two initial parameters, L and N, and a hash function H
 L == key length, eg 2048

N <= len(H), e.g. 256
 An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)
 {p, q, g} are public parameters

 Alice creates her own random private key x < q
 Public key y = gx mod p

Computer Science 161 Summer 2019 Dutra and Jawale

Alice's Signature...

 Create a random value k < q
 Calculate r = (gk mod p) mod q
 If r = 0, start again

 Calculate s = k-1 (H(m) + xr) mod q
 If s = 0, start again

 Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller
signatures)

 Verification
 w = s-1 mod q
 u1 = H(m) * w mod q
 u2 = r * w mod q
 v = (gu1yu2 mod p) mod q
 Validate that v = r

Computer Science 161 Summer 2019 Dutra and Jawale

But Easy To Screw Up...

 k is not just a nonce... It must be random and
secret

 If you know k, you can calculate x

 And even if you just reuse a random k...
for two signatures sa and sb

 A bit of algebra proves that k = (HA – HB) / (sa – sb)

 A good reference:
 How knowing k tells you x:

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

 How two signatures tells you k:
https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

Computer Science 161 Summer 2019 Dutra and Jawale

And NOT theoretical:
Sony Playstation 3 DRM
 The PS3 was designed to only run signed

code
 They used ECDSA as the signature algorithm
 This prevents unauthorized code from running
 They had an option to run alternate operating

systems (Linux) that they then removed

 Of course this was catnip to reverse
engineers

 Best way to get people interested:
remove Linux from a device...

 It turns for out one of the key authentication
keys used to sign the firmware...

 Ended up reusing the same k for multiple signatures!

Computer Science 161 Summer 2019 Dutra and Jawale

And NOT Theoretical:
Android RNG Bug + Bitcoin
 OS Vulnerability in 2013

Android "SecureRandom" wasn't actually
secure!

 Not only was it low entropy, it would occasionally return
the same value multiple times

 Multiple Bitcoin wallet apps on Android were
affected

 "Pay B Bitcoin to Bob" is signed by Alice's public key using
ECDSA

 Message is broadcast publicly for all to see

 So you'd have cases where "Pay B to Bob" and
"Pay C to Carol" were signed with the same k

 So of course someone scanned for all such
Bitcoin transactions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

