
Computer Science 161 Summer 2019 Dutra & Jawale

Network
Security

5

Computer Science 161 Summer 2019 Dutra & Jawale

Announcements

 Project 2 due July 29
 Start your implementation early!
 Autograder is up

 Complete Mid-Summer Survey
 HW2 due August 1

Computer Science 161 Summer 2019 Dutra & Jawale

Reminder:
HTTPS Connection (SSL / TLS)

 Browser (client) connects via TCP to
Amazon’s HTTPS server

 Client picks 256-bit random number RB,
sends over list of crypto protocols it
supports

 Server picks 256-bit random number RS,
selects protocols to use for this session

 Server sends over its certificate
 (all of this is in the clear)

 Client now validates cert

SYN

SYN ACK

ACK

Browser
Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3
KB of

 data

Computer Science 161 Summer 2019 Dutra & Jawale

HTTPS Connection (SSL / TLS), cont.

 For RSA, browser constructs “Premaster Secret” PS
 Browser sends PS encrypted using Amazon’s public

RSA key KAmazon
 Using PS, RB, and RS, browser & server derive

symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

 One pair to use in each direction

 Browser & server exchange MACs computed over
entire dialog so far

 If good MAC, Browser displays
 All subsequent communication encrypted w/

symmetric cipher (e.g., AES128) cipher keys, MACs
 Sequence #’s thwart replay attacks

Browser

Here’s my cert

~2-3
KB of

 data

{PS}KAmazon

PS

PS

{M
1, MAC(M

1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Computer Science 161 Summer 2019 Dutra & Jawale

Alternative: Ephemeral Key Exchange via
Diffie-Hellman
 For Diffie-Hellman (DHE), server generates

random a, sends public parameters and ga
mod p

 Signed with server’s private key

 Browser verifies signature
 Browser generates random b, computes PS

= gab mod p, sends gb mod p to server
 Server also computes

PS = gab mod p
 Remainder is as before: from PS, RB, and RS,

browser & server derive symm. cipher keys
(CB, CS) and MAC integrity keys (IB, IS), etc…

Browser

Here’s my cert

~2-3
KB of

 data

gb mod p
PS

PS

{M
1, MAC(M

1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p}K
-1

Amazon

…

Amazon
Server

Computer Science 161 Summer 2019 Dutra & Jawale

Cipher Suite
Negotiation
 Chrome's cipher-suite information
 Client sends to the server
 Server then choses which one it wants
 It should pick the common mode that both prefer

based on order

 First is a dummy to keep servers
honest

 Then its the bulk encryption only
options

 Then key exchanges w encryption
mode

 Description is key exchange, signature (if
necessary), and then bulk cipher & hash

Computer Science 161 Summer 2019 Dutra & Jawale

Why Rb and Rs?

 Both Rb and Rs act to affect the keys... Why?
 Keys = F(Rb || Rs || PS)

 Needed to prevent a replay attack
 Attacker captures the handshake from either the client or server and

replays it...

 If the other side choses a different R the next time...
 The replay attack fails.

 But you don't need to check for reuse by the other
side..

 Just make sure you don't reuse it on your side!

Computer Science 161 Summer 2019 Dutra & Jawale

And Sabotaged pRNGs...

 Let us assume the server is using DHE...
 If an attacker can know a, they have all the information needed to decrypt the traffic:
 Since PS = gab, and can see gb.

 TLS spews a lot of "random" numbers publicly as well
 Nonces in the crypto, Rs, etc...

 If the server uses a bad pRNG which is both sabotaged and doesn't
have rollback resistance...

 Dual_EC DRBG where you know the secret used to create the generator...
 ANSI X9.31: An AES based one with a secret key...

 Attacker sees the handshake, sees subsequent PRNG calls, works
backwards to get the secret

 Attack of the week: DUHK
 https://blog.cryptographyengineering.com/2017/10/23/attack-of-the-week-duhk/

Computer Science 161 Summer 2019 Dutra & Jawale

Forward Secrecy Modes...

 The real benefit from DHE/ECDHE "forward secret"
modes

 Reminder: Forward Secrecy: Even if the attacker later compromises
the server's private key, the attacker can't compromise previous
traffic

 It makes it far more difficult to use even after an
attacker compromises the server's private key

 Attacker has to be a full MitM:
Do the handshake to the client and a separate one for the server

Computer Science 161 Summer 2019 Dutra & Jawale

End-to-End ⇒ Powerful Protections

 Attacker runs a sniffer to capture our WiFi session?
 But: encrypted communication is unreadable
 Attacker doesn’t learn contents, but learns metadata (browsing history)!

 DNS cache poisoning?
 Client goes to wrong server
 But: detects impersonation
 No problem!

 Attacker hijacks our connection, injects new traffic
 But: data receiver rejects it due to failed integrity check since all communication has

a mac on it
 No problem!

 Only thing a full man-in-the-middle attacker can do is inject
RSTs, inject invalid packets, or drop packets: limited to DoS

Computer Science 161 Summer 2019 Dutra & Jawale

SSL/TLS Problem:
Revocation

 A site screws up and an attacker steals the private
key associated with a certificate, what now?

 Certificates have a timestamp and are only good for a specified time
 But this time is measured in years!?!?

 Two mitigations:
 Certificate revocation lists
 Your browser occasionally calls back to get a list of "no longer accepted"

certificates

 OSCP
 Online Certificate Status Protocol:

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

Computer Science 161 Summer 2019 Dutra & Jawale

“sslstrip”
(Amazon FINALLY fixed this recently)

Regular web surfing: http: URL

So no integrity - a MITM attacker
can alter pages returned by server
…

And when we click here …
… attacker has changed the corresponding link so that it’s ordinary
http rather than https!

We never get a chance to use TLS’s protections! :-(

Computer Science 161 Summer 2019 Dutra & Jawale

SSL / TLS Limitations, cont.

 Problems that SSL / TLS does not take care of ?
 Censorship
 SQL injection / XSS / server-side coding/logic flaws
 Vulnerabilities introduced by server inconsistencies
 Browser and server bugs
 Bad passwords

Computer Science 161 Summer 2019 Dutra & Jawale

TLS/SSL Trust Issues

 User has to make correct trust decisions …

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

Computer Science 161 Summer 2019 Dutra & Jawale

TLS/SSL Trust Issues, cont.

 “Commercial certificate authorities protect you from
anyone from whom they are unwilling to take
money.”

 Matt Blaze, circa 2001

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

TLS/SSL Trust Issues

 “Commercial certificate authorities protect you from
anyone from whom they are unwilling to take
money.”

 Matt Blaze, circa 2001

 So how many CAs do we have to worry about,
anyway?

 Of course, it’s not just their greed that matters …

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

This appears to be a fully
valid cert using normal
browser validation rules.

Only detected by Chrome due
to its introduction of cert

“pinning” – requiring that
certs for certain domains

must be signed by specific
CAs rather than any generally

trusted CA

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

The DigiNotar Fallout

 The result was the “CA Death Sentence”:
 Web browsers removed it from the trusted root certificate store

 This happened again with “WoSign”
 A Chinese CA

 WoSign would allow an interesting attack
 If I controlled RafaelTupynamba.github.com…
 WoSign would allow me to create a certificate for *.github.com!?!?
 And a bunch of other shady shenanigans

http://github.com/

Computer Science 161 Summer 2019 Dutra & Jawale

TLS/SSL Trust Issues

 “Commercial certificate authorities protect you from
anyone from whom they are unwilling to take money.”

 Matt Blaze, circa 2001

 So how many CAs do we have to worry about, anyway?
 Of course, it’s not just their greed that matters …
 And it’s not just their diligence & security that matters...
 “A decade ago, I observed that commercial certificate authorities

protect you from anyone from whom they are unwilling to take
money. That turns out to be wrong; they don't even do that much.” -
Matt Blaze, circa 2010

Computer Science 161 Summer 2019 Dutra & Jawale

So the Modern Solution:
Invoke Ronald Reagan, “Trust, but Verify”
 Static Certificate Pinning:

The chrome browser has a list of certificates or certificate
authorities that it trusts for given sites

 Now creating a fake certificate requires attacking a particular CA

 HPKP Certificate Pinning:
The web server provides hashes of certificates that should be trusted

 This is “Leap of Faith”: The first time you assume it is honest but you will catch
future changes

 Transparency mechanisms:
 Public logs provided by certificate authorities
 Browser extensions (EFF’s TLS observatory)
 Backbone monitors (ICSI’s TLS notary)

Computer Science 161 Summer 2019 Dutra & Jawale

And Making It Cheap:
LetsEncrypt...

 Coupled to the depreciation of unencrypted HTTP...
 Need to be able to have HTTPS be just about the same complexity...

 Idea: Make it easy to "prove" you own a web site:
 Can you write an arbitrary cookie at an arbitrary location?

 Build automated infrastructure to do this
 Script to create a private key
 Generate a certificate signing request
 PKI authority says "here's a file, put it on the server"
 Script puts it on the server

Computer Science 161 Summer 2019 Dutra & Jawale

Break
Random fact about me...

 I’ve been to a lot of Math Olympiads
 Traveled to 6 countries
 In the International

Mathematical Olympiad,
I received my medal from
Princess Letizia of Spain
(now Queen of Spain)

Computer Science 161 Summer 2019 Dutra & Jawale

Theme of This Lecture In Song:
50 Whys to Stop A Server...

 You are a bad guy...
 And you want to stop some server

from being available

 Why? You name it...
 Because its hard for someone to

frag you in an online game if you
"boot" him from the network

 Because people will pay up to stop
the attack

 Because it conveys a political
message

 Get paid for by others

Computer Science 161 Summer 2019 Dutra & Jawale

The Easy DoS on a System:
Resource Consumption...

 Bad Dude has an account on your computer...
 And wants to disrupt your work on Project 2...

 He runs this simple program:
 while(1):
 Write random junk to random files

 (uses disk space, thrashes the disk)
 Allocate a bunch of RAM and write to it

 (uses memory)
 fork()

 (creates more processes to run)

 Only defense is some form of quota or limits:
The system itself must enforce some isolation

Computer Science 161 Summer 2019 Dutra & Jawale

The Network DOS

Computer Science 161 Summer 2019 Dutra & Jawale

Or, another visual explanation...

 https://twitter.com/kokonoe0825/status/789536739887
112192

https://twitter.com/kokonoe0825/status/789536739887112192
https://twitter.com/kokonoe0825/status/789536739887112192

Computer Science 161 Summer 2019 Dutra & Jawale

DoS & Networks

 How could you DoS a target’s Internet access?
 Send a zillion packets at them
 Internet lacks isolation between traffic of different users!

 What resources does attacker need to pull this off?
 At least as much sending capacity (bandwidth) as the bottleneck

link of the target’s Internet connection
 Attacker sends maximum-sized packets

 Or: overwhelm the rate at which the bottleneck router can process
packets

 Attacker sends minimum-sized packets!
 (in order to maximize the packet arrival rate)

Computer Science 161 Summer 2019 Dutra & Jawale

Defending Against Network DoS

 Suppose an attacker has access to a beefy system
with high-speed Internet access (a “big pipe”).

 They pump out packets towards the target at a very high rate.
 What might the target do to defend against the onslaught?
 Install a network filter to discard any packets that arrive with

attacker’s IP address as their source
 E.g., drop * 66.31.33.7:* -> *:*
 Or it can leverage any other pattern in the flooding traffic that’s not in

benign traffic

 Attacker’s IP address = means of identifying misbehaving user

Computer Science 161 Summer 2019 Dutra & Jawale

Filtering Sounds Pretty Easy …

 … but DoS filters can be easily evaded:
 Make traffic appear as though it’s from many hosts
 Spoof the source address so it can’t be used to filter

 Just pick a random 32-bit number of each packet sent
 How does a defender filter this?

 They don’t!
 Best they can hope for is that operators around the world implement anti-spoofing

mechanisms (today about 75% do)

 Use many hosts to send traffic rather than just one
 Distributed Denial-of-Service = DDoS (“dee-doss”)
 Requires defender to install complex filters
 How many hosts is “enough” for the attacker?

 Today they are very cheap to acquire … :-(

Computer Science 161 Summer 2019 Dutra & Jawale

It’s Not A “Level Playing Field”

 When defending resources from exhaustion, need to
beware of asymmetries, where attackers can
consume victim resources with little comparable
effort

 Makes DoS easier to launch
 Defense costs much more than attack

 Particularly dangerous form of asymmetry:
amplification

 Attacker leverages system’s own structure to pump up the load they
induce on a resource

Computer Science 161 Summer 2019 Dutra & Jawale

Amplification

 Example of amplification: DNS lookups
 Reply is generally much bigger than request
 Since it includes a copy of the reply, plus answers etc.

 Attacker spoofs DNS request to a patsy DNS
 server, seemingly from the target

 Small attacker packet yields large flooding packet
 Doesn’t increase # of packets, but total volume

 Note #1: these examples involve blind spoofing
 So for network-layer flooding, generally only works for UDP-based protocols

(can’t establish a TCP connection)

 Note #2: victim doesn’t see spoofed source addresses
 Addresses are those of actual intermediary systems

Computer Science 161 Summer 2019 Dutra & Jawale

Botnets

 If an attacker can control a lot of systems
 They gain a huge amount of bandwidth
 Modern DOS attacks approach 1 Terabit-per-second with direct connections

 And it becomes very hard to filter them out
 How do you specify 1M machines you want to ignore?

 You control these "bots" in a "botnet"
 So you can issue commands that cause all these systems to do what you

want

 This is what took down dyn DNS (and with it Twitter, Reddit,
etc...) two years ago: A botnet composed primarily of
compromised cameras and DVRs:

 The Miraj botnet

Computer Science 161 Summer 2019 Dutra & Jawale

Transport-Level Denial-of-Service

 Recall TCP’s 3-way connection establishment handshake
–Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates
state associated
with connection
here
(buffers, timers,
counters)

Attacker
doesn’t even
need to send
this ack

Computer Science 161 Summer 2019 Dutra & Jawale

Transport-Level Denial-of-Service

 Recall TCP’s 3-way connection establishment handshake
 Goal: agree on initial sequence numbers

 So a single SYN from an attacker suffices to force the server to
spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates
state associated
with connection
here
(buffers, timers,
counters)

Attacker
doesn’t even
need to send
this ack

Computer Science 161 Summer 2019 Dutra & Jawale

TCP SYN Flooding

 Attacker targets memory rather than network capacity
 Every (unique) SYN that the attacker sends burdens

the target
 What should target do when it has no more memory

for a new connection?
 No good answer!
 Refuse new connection?
 Legit new users can’t access service

 Evict old connections to make room?
 Legit old users get kicked off

Computer Science 161 Summer 2019 Dutra & Jawale

TCP SYN Flooding Defenses

 How can the target defend itself?

 Approach #1: make sure they have tons of memory!
 How much is enough?
 Depends on resources attacker can bring to bear (threat model),

which might be hard to know

 Back of the envelope:
 If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker

needs...
 100k packets/minute, or a bit more than 1,000 packets per second

Computer Science 161 Summer 2019 Dutra & Jawale

TCP SYN Flooding Defenses

 Approach #2: identify bad actors & refuse their
connections

 Hard because only way to identify them is based on IP address
 We can’t for example require them to send a password because doing so

requires we have an established connection!

 For a public Internet service, who knows which addresses customers
might come from?

 Plus: attacker can spoof addresses since they don’t need to
complete TCP 3-way handshake

 Approach #3: don’t keep state! (“SYN cookies”; only
works for spoofed SYN flooding)

Computer Science 161 Summer 2019 Dutra & Jawale

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

 Server: when SYN arrives, rather than keeping state
locally, send it to the client …

 Client needs to return the state in order to established
connection

Server only saves
state here

Do not save state
here; give to client

Computer Science 161 Summer 2019 Dutra & Jawale

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

 Server: when SYN arrives, rather than keeping state
locally, send it to the client …

 Client needs to return the state in order to established
connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so
ideal!

TCP doesn’t include an easy
way to add a new <State> field
like this.

Is there any way to get the
same functionality without
having to change TCP clients?

Computer Science 161 Summer 2019 Dutra & Jawale

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

 Server: when SYN arrives, encode connection state entirely within
SYN-ACK’s sequence # y

 y = encoding of necessary state, using server secret

 When ACK of SYN-ACK arrives, server only creates state if value of y from it
agrees w/ secret

Server only creates
state here

Do not create
state here

Instead, encode it
here

Computer Science 161 Summer 2019 Dutra & Jawale

SYN Cookies: Discussion

 Illustrates general strategy: rather than holding state, encode
it so that it is returned when needed

 For SYN cookies, attacker must complete
3-way handshake in order to burden server

 Can’t use spoofed source addresses

 Note #1: strategy requires that you have enough bits to
encode all the state

 (This is just barely the case for SYN cookies)
 You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence

 Note #2: if it’s expensive to generate or check the cookie,
then it’s not a win

Computer Science 161 Summer 2019 Dutra & Jawale

Application-Layer DoS

 Rather than exhausting network or memory
resources, attacker can overwhelm a service’s
processing capacity

 There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

Computer Science 161 Summer 2019 Dutra & Jawale

Computer Science 161 Summer 2019 Dutra & Jawale

Algorithmic complexity attacks

 Attacker can try to trigger worst-case complexity of
algorithms / data structures

 Example: You have a hash table.
Expected time: O(1). Worst-case: O(n).

 Attacker picks inputs that cause hash collisions.
Time per lookup: O(n).
Total time to do n operations: O(n^2).

 Solution? Use algorithms with good worst-case running time.
 E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions

will be rare.
 If the attacker doesn't know the key that is

Computer Science 161 Summer 2019 Dutra & Jawale

Application-Layer DoS

 Defenses against such attacks?
 Approach #1: Only let legit users issue expensive requests
 Relies on being able to identify/authenticate them
 Note: that this itself might be expensive!

 Approach #2: Force legit users to “burn” cash
 This is what a captcha really is!

 Approach #3: massive over-provisioning ($$$)
 Or pay for someone else who massively over provisions for

everyone:
A content delivery network

Computer Science 161 Summer 2019 Dutra & Jawale

DoS Defense in General Terms

 Defending against program flaws requires:
 Careful design and coding/testing/review
 Consideration of behavior of defense mechanisms
 E.g. buffer overflow detector that when triggered halts execution to prevent code

injection ⇒ denial-of-service

 Defending resources from exhaustion can be really hard.
 Requires:

 Isolation and scheduling mechanisms
 Keep adversary’s consumption from affecting others

 Reliable identification of different users
 Or just a ton of $$$$

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

