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Announcements

 Project 2 due July 29
 Start your implementation early!
 Autograder is up

 Complete Mid-Summer Survey
 HW2 due August 1
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Reminder:
HTTPS Connection (SSL / TLS)

 Browser (client) connects via TCP to 
Amazon’s HTTPS server

 Client picks 256-bit random number RB, 
sends over list of crypto protocols it 
supports

 Server picks 256-bit random number RS, 
selects protocols to use for this session

 Server sends over its certificate
 (all of this is in the clear)

 Client now validates cert

SYN

SYN ACK

ACK

Browser
Amazon
Server

Hello.  My rnd # = R
B.  I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

My rnd # = RS.  Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 
KB of

 data
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HTTPS Connection (SSL / TLS), cont.

 For RSA, browser constructs “Premaster Secret” PS
 Browser sends PS encrypted using Amazon’s public 

RSA key KAmazon
 Using PS, RB, and RS, browser & server derive 

symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

 One pair to use in each direction

 Browser & server exchange MACs computed over 
entire dialog so far

 If good MAC, Browser displays
 All subsequent communication encrypted w/ 

symmetric cipher (e.g., AES128) cipher keys, MACs
 Sequence #’s thwart replay attacks

Browser

Here’s my cert

~2-3 
KB of

 data

{PS}KAmazon

PS

PS

{M
1, MAC(M

1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server
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Alternative: Ephemeral Key Exchange via 
Diffie-Hellman
 For Diffie-Hellman (DHE), server generates 

random a, sends public parameters and ga 
mod p

 Signed with server’s private key

 Browser verifies signature
 Browser generates random b, computes PS 

= gab mod p, sends gb mod p to server
 Server also computes

PS = gab mod p
 Remainder is as before: from PS, RB, and RS, 

browser & server derive symm. cipher keys 
(CB, CS) and MAC integrity keys (IB, IS), etc…

Browser

Here’s my cert

~2-3 
KB of

 data

gb mod p
PS

PS

{M
1, MAC(M

1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p}K
-1

Amazon

…

Amazon
Server
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Cipher Suite
Negotiation
 Chrome's cipher-suite information
 Client sends to the server
 Server then choses which one it wants
 It should pick the common mode that both prefer 

based on order

 First is a dummy to keep servers 
honest

 Then its the bulk encryption only 
options

 Then key exchanges w encryption 
mode

 Description is key exchange, signature (if 
necessary), and then bulk cipher & hash
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Why Rb and Rs?

 Both Rb and Rs act to affect the keys...  Why?
 Keys = F(Rb || Rs || PS)

 Needed to prevent a replay attack
 Attacker captures the handshake from either the client or server and 

replays it...

 If the other side choses a different R the next time...
 The replay attack fails.

 But you don't need to check for reuse by the other 
side..

 Just make sure you don't reuse it on your side!
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And Sabotaged pRNGs...

 Let us assume the server is using DHE...
 If an attacker can know a, they have all the information needed to decrypt the traffic:
 Since PS = gab, and can see gb.

 TLS spews a lot of "random" numbers publicly as well
 Nonces in the crypto, Rs, etc...

 If the server uses a bad pRNG which is both sabotaged and doesn't 
have rollback resistance...

 Dual_EC DRBG where you know the secret used to create the generator...
 ANSI X9.31: An AES based one with a secret key...

 Attacker sees the handshake, sees subsequent PRNG calls, works 
backwards to get the secret

 Attack of the week: DUHK
 https://blog.cryptographyengineering.com/2017/10/23/attack-of-the-week-duhk/
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Forward Secrecy Modes...

 The real benefit from DHE/ECDHE "forward secret" 
modes

 Reminder: Forward Secrecy:  Even if the attacker later compromises 
the server's private key, the attacker can't compromise previous 
traffic

 It makes it far more difficult to use even after an 
attacker compromises the server's private key

 Attacker has to be a full MitM:
Do the handshake to the client and a separate one for the server
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End-to-End ⇒ Powerful Protections

 Attacker runs a sniffer to capture our WiFi session?
 But: encrypted communication is unreadable
 Attacker doesn’t learn contents, but learns metadata (browsing history)!

 DNS cache poisoning?
 Client goes to wrong server
 But: detects impersonation
 No problem!

 Attacker hijacks our connection, injects new traffic
 But: data receiver rejects it due to failed integrity check since all communication has 

a mac on it
 No problem!

 Only thing a full man-in-the-middle attacker can do is inject 
RSTs, inject invalid packets, or drop packets: limited to DoS
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SSL/TLS Problem:
Revocation

 A site screws up and an attacker steals the private 
key associated with a certificate, what now?

 Certificates have a timestamp and are only good for a specified time
 But this time is measured in years!?!?

 Two mitigations:
 Certificate revocation lists
 Your browser occasionally calls back to get a list of "no longer accepted" 

certificates

 OSCP
 Online Certificate Status Protocol:

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol


Computer Science 161 Summer 2019 Dutra & Jawale

“sslstrip”
(Amazon FINALLY fixed this recently)

Regular web surfing: http: URL

So no integrity - a MITM attacker 
can alter pages returned by server 
…

And when we click here …
… attacker has changed the corresponding link so that it’s ordinary 
http rather than https!

We never get a chance to use TLS’s protections! :-(
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SSL / TLS Limitations, cont.

 Problems that SSL / TLS does not take care of ?
 Censorship
 SQL injection / XSS / server-side coding/logic flaws
 Vulnerabilities introduced by server inconsistencies
 Browser and server bugs
 Bad passwords
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TLS/SSL Trust Issues

 User has to make correct trust decisions …
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The equivalent as seen by most Internet users:

(note: an actual Windows error message!)
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TLS/SSL Trust Issues, cont.

 “Commercial certificate authorities protect you from 
anyone from whom they are unwilling to take 
money.”

 Matt Blaze, circa 2001
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TLS/SSL Trust Issues

 “Commercial certificate authorities protect you from 
anyone from whom they are unwilling to take 
money.”

 Matt Blaze, circa 2001

 So how many CAs do we have to worry about, 
anyway?

 Of course, it’s not just their greed that matters …
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This appears to be a fully 
valid cert using normal 
browser validation rules.

Only detected by Chrome due 
to its introduction of cert 

“pinning” –  requiring that 
certs for certain domains 

must be signed by specific 
CAs rather than any generally 

trusted CA
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The DigiNotar Fallout

 The result was the “CA Death Sentence”:
 Web browsers removed it from the trusted root certificate store

 This happened again with “WoSign”
 A Chinese CA

 WoSign would allow an interesting attack
 If I controlled RafaelTupynamba.github.com…
 WoSign would allow me to create a certificate for *.github.com!?!?
 And a bunch of other shady shenanigans

http://github.com/
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TLS/SSL Trust Issues

 “Commercial certificate authorities protect you from 
anyone from whom they are unwilling to take money.”

 Matt Blaze, circa 2001

 So how many CAs do we have to worry about, anyway?
 Of course, it’s not just their greed that matters …
 And it’s not just their diligence & security that matters...
 “A decade ago, I observed that commercial certificate authorities 

protect you from anyone from whom they are unwilling to take 
money. That turns out to be wrong; they don't even do that much.” - 
Matt Blaze, circa 2010
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So the Modern Solution:
Invoke Ronald Reagan, “Trust, but Verify”
 Static Certificate Pinning:

The chrome browser has a list of certificates or certificate 
authorities that it trusts for given sites

 Now creating a fake certificate requires attacking a particular CA

 HPKP Certificate Pinning:
The web server provides hashes of certificates that should be trusted

 This is “Leap of Faith”: The first time you assume it is honest but you will catch 
future changes

 Transparency mechanisms:
 Public logs provided by certificate authorities
 Browser extensions (EFF’s TLS observatory)
 Backbone monitors (ICSI’s TLS notary)
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And Making It Cheap:
LetsEncrypt...

 Coupled to the depreciation of unencrypted HTTP...
 Need to be able to have HTTPS be just about the same complexity...

 Idea:  Make it easy to "prove" you own a web site:
 Can you write an arbitrary cookie at an arbitrary location?

 Build automated infrastructure to do this
 Script to create a private key
 Generate a certificate signing request
 PKI authority says "here's a file, put it on the server"
 Script puts it on the server
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Break
Random fact about me...

 I’ve been to a lot of Math Olympiads
 Traveled to 6 countries
 In the International

Mathematical Olympiad,
I received my medal from
Princess Letizia of Spain
(now Queen of Spain)
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Theme of This Lecture In Song:
50 Whys to Stop A Server...

 You are a bad guy...
 And you want to stop some server 

from being available

 Why?  You name it...
 Because its hard for someone to 

frag you in an online game if you 
"boot" him from the network

 Because people will pay up to stop 
the attack

 Because it conveys a political 
message

 Get paid for by others
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The Easy DoS on a System:
Resource Consumption...

 Bad Dude has an account on your computer...
 And wants to disrupt your work on Project 2...

 He runs this simple program:
 while(1):
 Write random junk to random files

 (uses disk space, thrashes the disk)
 Allocate a bunch of RAM and write to it

 (uses memory)
 fork()

 (creates more processes to run)

 Only defense is some form of quota or limits:
The system itself must enforce some isolation
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The Network DOS
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Or, another visual explanation...

 https://twitter.com/kokonoe0825/status/789536739887
112192

https://twitter.com/kokonoe0825/status/789536739887112192
https://twitter.com/kokonoe0825/status/789536739887112192
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DoS & Networks

 How could you DoS a target’s Internet access?
 Send a zillion packets at them
 Internet lacks isolation between traffic of different users!

 What resources does attacker need to pull this off?
 At least as much sending capacity (bandwidth) as the bottleneck 

link of the target’s Internet connection
 Attacker sends maximum-sized packets

 Or: overwhelm the rate at which the bottleneck router can process 
packets

 Attacker sends minimum-sized packets!
  (in order to maximize the packet arrival rate)
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Defending Against Network DoS

 Suppose an attacker has access to a beefy system 
with high-speed Internet access (a “big pipe”).

 They pump out packets towards the target at a very high rate.
 What might the target do to defend against the onslaught?
 Install a network filter to discard any packets that arrive with 

attacker’s IP address as their source
 E.g., drop * 66.31.33.7:* -> *:*
 Or it can leverage any other pattern in the flooding traffic that’s not in 

benign traffic

 Attacker’s IP address = means of identifying misbehaving user
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Filtering Sounds Pretty Easy …

 … but DoS filters can be easily evaded:
 Make traffic appear as though it’s from many hosts
 Spoof the source address so it can’t be used to filter

 Just pick a random 32-bit number of each packet sent
 How does a defender filter this?

 They don’t!
 Best they can hope for is that operators around the world implement anti-spoofing 

mechanisms (today about 75% do)

 Use many hosts to send traffic rather than just one
 Distributed Denial-of-Service = DDoS (“dee-doss”)
 Requires defender to install complex filters
 How many hosts is “enough” for the attacker?

 Today they are very cheap to acquire … :-(
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It’s Not A “Level Playing Field”

 When defending resources from exhaustion, need to 
beware of asymmetries, where attackers can 
consume victim resources with little comparable 
effort

 Makes DoS easier to launch
 Defense costs much more than attack

 Particularly dangerous form of asymmetry: 
amplification

 Attacker leverages system’s own structure to pump up the load they 
induce on a resource
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Amplification

 Example of amplification: DNS lookups
 Reply is generally much bigger than request
 Since it includes a copy of the reply, plus answers etc.

  Attacker spoofs DNS request to a patsy DNS
 server, seemingly from the target

 Small attacker packet yields large flooding packet
 Doesn’t increase # of packets, but total volume

 Note #1: these examples involve blind spoofing
 So for network-layer flooding, generally only works for UDP-based protocols 

(can’t establish a TCP connection)

 Note #2: victim doesn’t see spoofed source addresses
 Addresses are those of actual intermediary systems
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Botnets

 If an attacker can control a lot of systems
 They gain a huge amount of bandwidth
 Modern DOS attacks approach 1 Terabit-per-second with direct connections

 And it becomes very hard to filter them out
 How do you specify 1M machines you want to ignore?

 You control these "bots" in a "botnet"
 So you can issue commands that cause all these systems to do what you 

want

 This is what took down dyn DNS (and with it Twitter, Reddit, 
etc...) two years ago:  A botnet composed primarily of 
compromised cameras and DVRs:

 The Miraj botnet
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Transport-Level Denial-of-Service

 Recall TCP’s 3-way connection establishment handshake
–Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates 
state associated 
with connection 
here
(buffers, timers, 
counters)

Attacker 
doesn’t even 
need to send 
this ack
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Transport-Level Denial-of-Service

 Recall TCP’s 3-way connection establishment handshake
 Goal: agree on initial sequence numbers

 So a single SYN from an attacker suffices to force the server to 
spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates 
state associated 
with connection 
here
(buffers, timers, 
counters)

Attacker 
doesn’t even 
need to send 
this ack
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TCP SYN Flooding

 Attacker targets memory rather than network capacity
 Every (unique) SYN that the attacker sends burdens 

the target
 What should target do when it has no more memory 

for a new connection?
 No good answer!
 Refuse new connection?
 Legit new users can’t access service

 Evict old connections to make room?
 Legit old users get kicked off
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TCP SYN Flooding Defenses

 How can the target defend itself?
 

 Approach #1: make sure they have tons of memory!
 How much is enough?
 Depends on resources attacker can bring to bear (threat model), 

which might be hard to know

 Back of the envelope: 
 If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker 

needs...
 100k packets/minute, or a bit more than 1,000 packets per second
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TCP SYN Flooding Defenses

 Approach #2: identify bad actors & refuse their 
connections

 Hard because only way to identify them is based on IP address
 We can’t for example require them to send a password because doing so 

requires we have an established connection!

 For a public Internet service, who knows which addresses customers 
might come from?

 Plus: attacker can spoof addresses since they don’t need to 
complete TCP 3-way handshake 

 Approach #3: don’t keep state!  (“SYN cookies”; only 
works for spoofed SYN flooding)
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

 Server: when SYN arrives, rather than keeping state 
locally, send it to the client …

 Client needs to return the state in order to established 
connection 

Server only saves 
state here

Do not save state 
here; give to client
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

 Server: when SYN arrives, rather than keeping state 
locally, send it to the client …

 Client needs to return the state in order to established 
connection 

Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so 
ideal!

TCP doesn’t include an easy 
way to add a new <State> field 
like this.

Is there any way to get the 
same functionality without 
having to change TCP clients?
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Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

 Server: when SYN arrives, encode connection state entirely within 
SYN-ACK’s sequence # y

 y = encoding of necessary state, using server secret

 When ACK of SYN-ACK arrives, server only creates state if value of y from it 
agrees w/ secret

Server only creates 
state here

Do not create
state here

Instead, encode it 
here
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SYN Cookies: Discussion

 Illustrates general strategy: rather than holding state, encode 
it so that it is returned when needed

 For SYN cookies, attacker must complete
3-way handshake in order to burden server

 Can’t use spoofed source addresses

 Note #1: strategy requires that you have enough bits to 
encode all the state

 (This is just barely the case for SYN cookies)
 You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence

 Note #2: if it’s expensive to generate or check the cookie, 
then it’s not a win
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Application-Layer DoS

 Rather than exhausting network or memory 
resources, attacker can overwhelm a service’s 
processing capacity

 There are many ways to do so, often at little 
expense to attacker compared to target 
(asymmetry)
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Algorithmic complexity attacks

 Attacker can try to trigger worst-case complexity of 
algorithms / data structures

 Example: You have a hash table.
Expected time: O(1).  Worst-case: O(n).

 Attacker picks inputs that cause hash collisions.
Time per lookup: O(n).
Total time to do n operations: O(n^2).

 Solution?  Use algorithms with good worst-case running time.
 E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions 

will be rare.
 If the attacker doesn't know the key that is



Computer Science 161 Summer 2019 Dutra & Jawale

Application-Layer DoS

 Defenses against such attacks?
 Approach #1: Only let legit users issue expensive requests
 Relies on being able to identify/authenticate them
 Note: that this itself might be expensive!

 Approach #2: Force legit users to “burn” cash
 This is what a captcha really is!

 Approach #3: massive over-provisioning ($$$)
 Or pay for someone else who massively over provisions for 

everyone:
A content delivery network



Computer Science 161 Summer 2019 Dutra & Jawale

DoS Defense in General Terms

 Defending against program flaws requires:
 Careful design and coding/testing/review
 Consideration of behavior of defense mechanisms
 E.g. buffer overflow detector that when triggered halts execution to prevent code 

injection ⇒ denial-of-service

 Defending resources from exhaustion can be really hard. 
 Requires:

 Isolation and scheduling mechanisms
 Keep adversary’s consumption from affecting others

 Reliable identification of different users
 Or just a ton of $$$$
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