
Web Security

CS 161: Computer Security

Ruta Jawale and Rafael Dutra
July 25, 2019

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

The web architecture is a mess when it
comes to security

Announcements

• Project 2 due next week Monday (7/29)

– Project party tomorrow (3-5 pm @ Soda 606)

• Homework 2 due next week Thursday (8/1)

• Midterm 2 in 1.5 weeks (8/5)

– Make sure to attend lectures and discussions

Web 101

What is the Web?
A platform for deploying applications and sharing information,
portably and securely

client browser web serverclient

HTTP
(Hypertext Transfer Protocol)

A common data communication protocol on the web

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBAN
K
Account
s
Bill
Pay
Mail
Transfe
rs

Alice
Smith

safebank.com/account.html

URLs

Example:
 http://safebank.com:81/account?id=10#statement

Protocol Hostname

Port Path

Query

Fragment

Global identifiers of network-retrievable resources

• Protocol
– http, https, ftp, ...

• Port
– http: 80, https: 443, ...

• Sent to web server
– path, query

• Local to client browser
– fragment

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBAN
K
Account
s
Bill
Pay
Mail
Transfe
rs

Alice
Smith

safebank.com/account.html

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap,

 image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Chrome/21.0.1180.75 (Macintosh;

Intel Mac OS X 10_7_4)

Host: www.safebank.com

Referer: http://www.google.com?q=dingbats

HTTP Request
Method Path HTTP version Headers

Data – none for GET
Blank line

GET: no
side effect
POST:
possible
side effect

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBAN
K
Account
s
Bill
Pay
Mail
Transfe
rs

Alice
Smith

safebank.com/account.html

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 12 Aug 2012 02:20:42 GMT

Server:

Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT

Set-Cookie: …

Content-Length: 2543

<HTML> This is web content formatted using

html </HTML>

HTTP version Status code Reason phrase
Headers

Data

Can be a webpage

Web page

web page

HTML

CSS

Javascript

HTML
A language to create structured documents
One can embed images, objects, or create interactive forms

index.html
<html>
 <body>
 <div>
 foo
 Go to Google!
 </div>
 <form>
 <input type="text” />
 <input type=”radio” />
 <input type=”checkbox” />
 </form>
 </body>
</html>

CSS (Cascading Style Sheets)
Style sheet language used for describing the presentation of a
document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;
}
p.sansserif {
font-family: Arial, Helvetica, sans-serif;
}

Javascript

Programming language used to manipulate
web pages. It is a high-level, untyped and
interpreted language with support for objects.

Supported by all web browsers
<script>
function myFunction() {
document.getElementById("demo").innerHTML = ”Text changed.";
}
</script>

Very powerful!

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBAN
K
Account
s
Bill
Pay
Mail
Transfe
rs

Alice
Smith

safebank.com/account.html

webpage

Page rendering

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to
the DOM

Painter

bitmap

DOM (Document Object Model)
a cross-platform model for representing and interacting with objects
in HTML

|-> Document
 |-> Element (<html>)
 |-> Element (<body>)
 |-> Element (<div>)
 |-> text node
 |-> Form
 |-> Text-box
 |-> Radio Button
 |-> Check Box

 DOM Tree
HTML
<html>
 <body>
 <div>
 foo
 </div>
 <form>
 <input type="text” />
 <input type=”radio” />
 <input type=”checkbox” />
 </form>
 </body>
</html>

Web & HTTP 101

WEB SERVERCLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

SAFEBAN
K
Account
s
Bill
Pay
Mail
Transfe
rs

Alice
Smith

safebank.com/account.html

The power of Javascript

Get familiarized with it so that you can
think of all the attacks one can do with it

What can you do with Javascript?

Almost anything you want to the DOM!
A JS script embedded on a page can modify in
almost arbitrary ways the DOM of the page. The
same happens if an attacker manages to get you
load a script into your page.

w3schools.com has nice interactive tutorials:
https://www.w3schools.com/js

Example of what Javascript
can do…

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"
onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">
 Click Me!</button>

Can change HTML content:

DEMO from w3schools.com

Other examples

● Can change images

● Can change style of elements

● Can hide elements

● Can unhide elements

● Can change cursor

Other example: can access cookies

Will learn later that cookies are useful for authentication.

JS can read cookie:
var x = document.cookie;

Change cookie with JS:
document.cookie = "username=John Smith; expires=Thu,
18 Dec 2013 12:00:00 UTC; path=/";

Demo

Frames

Frames

• Enable embedding a page within a page

<iframe src="URL"></iframe>

src = google.com/…
name = awglogin

outer page

inner page

Frames

• Modularity
– Brings together content from multiple sources
– Client-side aggregation

• Delegation
– Frame can draw only on its own rectangle

Slide from Dan Boneh

src = 7.gmodules.com/...
name = remote_iframe_7

Frames

• Outer page can specify only sizing and
placement of the frame in the outer page
• demo

• Frame isolation: Our page cannot
change contents of inner page, inner
page cannot change contents of outer
page

Web Security

A historical perspective

• The web is an example of “bolt-on security”
• Originally, the web was invented to allow

physicists to share their research papers
– Only textual web pages + links to other pages;

no security model to speak of

The web became complex
and adversarial quickly

• Then we added embedded images
– Crucial decision: a page can embed images loaded

from another web server
• Then, Javascript, dynamic HTML, AJAX, CSS,

frames, audio, video, …
• Today, a web site is a distributed application
• Attackers have various motivations

Web security is a challenge!

Desirable security goals

• Integrity: malicious web sites should not be
able to tamper with integrity of my computer or
my information on other web sites

• Confidentiality: malicious web sites should not
be able to learn confidential information from
my computer or other web sites

• Privacy: malicious web sites should not be able
to spy on me or my activities online

• Availability: attacker cannot make site
unavailable

Security on the web

• Risk #1: we don’t want a malicious site to be
able to trash my files/programs on my computer
– Browsing to awesomevids.com (or evil.com) should

not infect my computer with malware, read or write
files on my computer, etc.

• Defense: Javascript is sandboxed;
try to avoid security bugs in browser code;
privilege separation; automatic updates; etc.

Security on the web

• Risk #2: we want data stored on a web server
to be protected from unauthorized access

• Defense: server-side security
– Think Project 2

Security on the web

• Risk #3: we don’t want a malicious site to be
able to spy on or tamper with my information or
interactions with other websites
– Browsing to evil.com should not let evil.com spy

on my emails in Gmail or buy stuff with my Amazon
account

• Defense: the same-origin policy
– A security policy grafted on after-the-fact, and

enforced by web browsers

Security on the web

• Risk #4: we don’t want malicious websites to
subvert or act in opposition to user’s intent
– Clickjacking attack

• Defense: frame busting can help prevent some
clickjacking attacks

Break Time: Spencer McCall

• Missouri -> San Diego, CA

• Enjoys game theory, also crypto

• English, French, Italian

• Accidentally DoS government

server while web scrapping

Image: Getty Images/iStockphoto

Same-origin Policy

Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript on one page cannot read or
modify pages from different origins

Same-origin policy
• Each site in the browser is isolated from all others

wikipedia.org

bankofamerica.com

browser:

security
barrier

Same-origin policy
• Multiple pages from the same site are not isolated

wikipedia.org

wikipedia.org

browser:

No security
barrier

Same-origin policy

http://en.wikipedia.org

• The origin of a site is derived from its URL

Same-origin policy

http://en.wikipedia.org

http://upload.wikimedia.org

• The origin of a site is derived from its URL
– Images adopt origin of site that loads them

• The origin of a site is derived from its URL
– Images adopt origin of site that loads them
– Javascript runs with the origin of the site that

loaded it

Same-origin policy

http://en.wikipedia.org

http://www.google-analytics.com

Origins of Frames

• iframes do not adopt origin of site that
loads them
– iframe origin is the inner site (being

displayed), and not the outer site (loading
website)

Origin

• Granularity of protection for same origin policy
• Origin = protocol + hostname + port

http://coolsite.com:81/tools/info.html

protocol hostname port

• Origin is determined by string matching! If
these match, it is same origin, else it is not.
– However, port matching depends on browser

implementation

Exercises
Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:80/ http://wikipedia.org:81/

http://wikipedia.org:80/ http://wikipedia.org/

Except

except !!!

Cross-origin communication
• Allowed through a narrow API:

postMessage
• Receiving origin decides if to accept the

message based on origin (whose
correctness is enforced by browser)

postMessage
(“run this
script”,
script)

Check origin, and request!

Clickjacking

Clickjacking attacks

• Exploitation where a user’s mouse click is used in a
way that was not intended by the user

Talk to your partner

• How can a user’s click be used in a way different than
intended?

Simple example

What does it do?
• Opens a window to the attacker site
Why include href to Google?
• Browser status bar shows URL when hovering

over as a means of protection

<a

onMouseDown=window.open(http://www.evil.com)

href=http://www.google.com/>

Go to Google

What happens in this case?

Funny cats website

JavaScript

secret secret

Frames: same-origin policy

• Frame inherits origin of its URL
• Same-origin policy: if frame and outer page have

different origins, they cannot access each other
■ In particular, malicious JS on outer page cannot

access resources of inner page

How to bypass same-origin
policy for frames?

Clickjacking

Clickjacking using frames

• Evil site frames good site

• Evil site covers good site by putting dialogue boxes or other

elements on top of parts of framed site to create a different

effect

• Inner site now looks different to user

How can we defend against
clickjacking?

Defenses

• User confirmation
- Good site pops dialogue box with information
on the action it is about to make and asks for
user confirmation
- Degrades user experience

• UI randomization
- good site embeds dialogues at random
locations so it is hard to overlay
- Difficult & unreliable (e.g. multi-click attacks)

Defense 3: Framebusting

Web site includes code on a page that prevents other
pages from framing it

Demo

What is framebusting?

Framebusting code is often made up of
• a conditional statement and
• a counter action

Common method:
if (top != self) {

 top.location = self.location;
}

A Survey

Sites Framebusting
Top 10 60%

Top 100 37%

Top 500 14%

Framebusting is very common at the Alexa Top 500 sites

credit: Gustav Rydstedt

[global traffic rank of a website]

Conditional Statements
if (top != self)

if (top.location != self.location)
if (top.location != location)

if (parent.frames.length > 0)
if (window != top)

if (window.top !== window.self)
if (window.self != window.top)

if (parent && parent != window)
if (parent && parent.frames &&

parent.frames.length>0)
if((self.parent && !(self.parent===self)) &&

(self.parent.frames.length!=0))

Many framebusting methods

Counter-Action Statements
top.location = self.location

top.location.href = document.location.href

top.location.href = self.location.href

top.location.replace(self.location)

top.location.href = window.location.href

top.location.replace(document.location)

top.location.href = window.location.href

top.location.href = "URL"

document.write(’’)

top.location = location

top.location.replace(document.location)

top.location.replace(’URL’)

top.location.href = document.location

Many framebusting methods

Most current framebusting
can be defeated

Easy bugs
Goal: bank.com wants only bank.com’s sites to frame it

if (top.location != location) {
 if (document.referrer &&

document.referrer.indexOf(”bank.com") == -1)
{

 top.location.replace(document.location.href);
 }

}

Problem: http://badguy.com?q=bank.com

Bank runs this code to protect itself:

Abusing the XSS filter

IE8 reflective XSS filters:

• Browser requested URL contains javascript:

■ http://www.victim.com?var=<script> alert(‘xss’); </script>

• Server responds

• Brower checks

■ If <script> alert(‘xss’); </script> appears in rendered page

word for word, the IE8 filter will replace it with

<sc#pt> alert(‘xss’); </sc#pt>

How can attacker abuse this?

Abusing the XSS filter
• Attacker figures out the framebusting code of victim site (easy: visit

victim site in attacker’s browser and view the source code)

■ <script> if(top.location != self.location) //framebust </script>

• Framing page (attacker’s outer page) does:

■ <iframe src=“http://www.victim.com?var=<script>

if(top.location != self.location) //framebust </script>“>

• IE8 XSS filter modifies victim site’s script to:

■ <sc#pt> if(top.location != self.location)

XSS filter disables legitimate framebusting code!!

Coming up:
attacks on web servers!

