Web Security:
Injection Attacks

CS 161: Computer Security
Ruta Jawale and Rafael Dutra

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

Announcements

* Project 2 deadline extended!

— Due tomorrow (7/30)

- Autograder gives partial feedback
 Homework 2 deadline extended!

— Due this Friday (8/2)
« Midterm 2 is next Monday (8/5)

— Attend lectures and discussions

What happens if a web
server is compromised?

Steal sensitive data (e.g., data from many users)
Change server data (e.g., affect users)
Gateway to enabling attacks on clients
Impersonation (of users to servers, or vice versa)

Others

Common Attacks
« SQL Injection

— Browser sends malicious input to server
— Bad input checking leads to malicious SQL query

« XSS — Cross-site scripting

— Attacker inserts client-side script into pages viewed
by other users, script runs in the users’ browsers

 CSRF — Cross-site request forgery

— Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

Today’s focus: injection attacks

Historical Overview

« 1998: first public discussions of SQL injection

phreak +]
hack

In the Phrack magazine, first
magazine for hacking community.

First published in 1985.

» Hundreds of proposed fixes and solutions

Top 10 Web Vulnerabilities

OWASP Top 10 - 2013 OWASP Top 10 - 2017

A1 - Injection A1:2017-Injection

A2 - Broken Authentication and Session Management -) A2:2017-Broken Authentication

A3 - Cross-Site Scripting (XSS)

A4 - Insecure Direct Object References [Merged+A7] T | A4:2017-XML External Entities (XXE) [NEW]

3 A3:2017-Sensitive Data Exposure

A5 - Security Misconfiguration A5:2017-Broken Access Control [Merged
ty g] [Merged]
A6 - Sensitive Data Exposure 2} A6:2017-Security Misconfiguration

4
A7 - Missing Function Level Access Contr [Merged+Ad] |] | A7:2017-Cross-Site Scripting (XSS)
AB - Cross-Site Request Forgery (CSRF) [%] A8:2017-Insecure Deserialization [NEW, Community]

A9 - Using Components with Known Vulnerabilities =P A9:2017-Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Learn from the mistakes of others!!

General Code Injection

 Attacker user provides bad input
* Web server does not check input format

« Enables attacker to execute arbitrary code on the
server

PHP Code Injection: Eval

S GET[‘A’]: gets the input with value A from a HTTP GET
request

1. User visits calculator and writes 3+5 ENTER

2. User’s browser sends HTTP request
http://site.com/calc.php?exp=" 3+5”

3. Script at server receives http request and runs
$ GET (“exp”) =" 3+5”

S POST[‘B’]: gets the input with value B from a HTTP POST
request

PHP Code Injection: Eval

« eval allows a web server to evaluate a string as code

— e.g. eval(‘$result = 3+5’) produces 8

calculator: http://site.com/calc.php

ﬂ http://site.com/calc.php?exp=" 3+5”
& |

sexp = $ GET[‘exp'];
eval (/' Sresult = Sexp');

Attack: http://site.com/calc.php?exp=" 3+5 ;_ system(‘rm *.*’)”

PHP Code Injection: System

« Example: PHP server-side code for sending email

Semail = $ POST[“email”]

$subject = $ POST[“subject”]

system(Ymail $email -s Ssubject <
/tmp/Jjoinmynetwork”)

* Attacker can post

http://yourdomain.com/mail .php?
email="hacker@hackerhome.net” &
subject=“foo < /usr/passwd; 1s”

Structured Query Language (SQL)

How is SQL related to the web?

Structure of Modern Web Services

@ee

. Browser
F& QU

URL / Form

command.php?

argl=x&arg2=y

4

Web
server

Database
server

Structure of Modern Web Services

@ee

Browser

URL / Form

command.php?
argl=x&arg2=y

i

Web
server

Database query
built from x and y

Database
server

Structure of Modern Web Services

@ee

Browser Web
' server

corresponding to x &

Custom data J
y

Database
server

Structure of Modern Web Services

gce

Browser

¥ (i \‘ »

Web page built
using custom data

Web
server

<
«

Custom data
corresponding to X & y

Database
server

Structure of Modern Web Services

@oee

Browser Web
g |) | server

Database

Server

W

Databases @ Me°%- 9

‘mongo
« Structured collection of data ORACLE
— Often storing tuples/rows of related values
— QOrganized in tables
Customer
AcctNum | Username Balance
1199 [zuckerberg 35.7

0501 |bgates 79.2

Databases

» Widely used by web services to store server and
user information

« Database runs as separate process to which web
server connects

— Web server sends queries or commands derived
from incoming HTTP request

— Database server returns associated values or
modifies/updates values

« SQL is commonly used to manage the database

What are some examples of what
SQL can do?

* Widely used database query language

SQL: SELECT

— (Pronounced “ess-cue-ell” or “sequel’)

 Fetch a set of rows:

SELECT column FROM table WHERE condition

— returns: the value(s) of the given column in the
specified table, for all records where condition is true.

 Example:

SELECT Balance FROM Customer
WHERE Username='bgates'

returns: the value 79.2

Customer

AcctNum

Username

Balance

1199

zuckerberg

35.71

0501

bgates

79.2

SQL: INSERT INTO

« Can add data to the table (or modify):

INSERT INTO Customer

VALUES (8477, 'oski', 10.00)
Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2
8477 oskKi 10.00

SQL: DROP TABLE

e (Can delete entire tables:

DROP TABLE Customer

Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

SQL: Multiple Queries

 Issue multiple commands, separated by semicolon “;" :
INSERT INTO Customer VALUES (4433,

'vladimir', 70.0),; SELECT AcctNum FROM
Customer WHERE Username='vladimir'

— returns: 4433

SQL: Subquery

* Issue subcommand using parentheses:

SELECT AcctNum, Balance FROM (SELECT *
FROM Customer WHERE Username='vladimir')

— subquery runs first and returns a table
— outer query selects specific columns from this table

SQL: Comment

13 7

Comments can be made using “--
SQL Parser ignores comments

SELECT AcctNum, Balance —-- Comment
FROM Customer

— There is a line break between Balance and FROM
— Comment is commented out
— This is a valid query

SELECT AcctNum, Balance -- Comment FROM
Customer

— All SQL code is on the same line
— Comment FROM Customer is commented out
— This is an invalid query

SQL

Get familiar with SQL.:

https://www.w3schools.com/sal/sgl examples.asp

https://www.w3schools.com/sql/sql_examples.asp

How does SQL parse its code?

SQL Parse Tree

} SELECT / FROM / WHERE |
: '
[AcctNum] [Customer AND J

SELECT AcctNum FROM Customer
WHERE Balance < 100 AND Username='Bob'

Break Time: Ryan Lehmkuhl

« San Diego, CA
* Enjoys systems security (Proj 2)

« A cappella group member

7

« Got lost in the Sahara Desert
« Found staring into the eyes of a

Kiwi bird IRL life changing

SQL Injection

How can an attacker use SQL?

HI, THIS 1S OH, DEAR - DID HE
YOUR SONS SCHOOL. | BREAK SOMETHING?
VERE HAVING SOME

CoMPUTER TROwRLE. | ' A WAY

o ﬁm

SQL Injection Scenario #1

e Suppose web server runs the following code:
Srecipient = 5 POST|['recipient'];
Ssgl = "SELECT AcctNum FROM Customer
WHERE Username='S$Srecipient' ";
Srs = Sdb->executeQuery ($sqgl) ;
— Web server stores URL parameter “recipient” in
variable $recipient

— Web server sends $sgl query to database server
to get recipient’s account number from database

SQL Injection Scenario #1

« Suppose web server runs the following code:
Srecipient = 5 POST|['recipient'];
Ssgl = "SELECT AcctNum FROM Customer
WHERE Username='S$Srecipient' ";

14

Srs = Sdb->executeQuery ($sqgl) ;

— Normal use case: If HTTP URL request contains
“?recipient=Bob”, then the SQL query will be

— 1A

Ssql = SELECT AcctNum FROM Customer
WHERE Username='Bob' "

SQL Injection Scenario #1

Victim Web Server

unintended

@ receive valuable data SQL query

Attacker

How an attacker use $recipient to
cause trouble here?

SQL Injection Scenario #1

Srecipient = 5 POST|['recipient'];
$Ssgl = "SELECT AcctNum FROM Customer

1A

WHERE Username='S$recipient' ;
Srs = Sdb->executeQuery ($sqgl) ;

Untrusted user input 'recipient' Is embedded
directly into SQL command

Attack: Srecipient = " alice’; SELECT
* FROM Customer—- "

Returns the entire contents of the Customer!

SQL Injection Scenario #2

set ok = execute("SELECT * FROM Users
WHERE user=' " & form("user") & "
' AND pwd="' " & form("pwd") & " '"

) ;

1f not ok.EOF
login success

else fail;

SQL Injection Scenario #2

Web
Browser
(Client)

Enter

Username

&

Password Web

Server

SELECT *
FROM Users
WHERE user="me’
AND pwd='1234'

(1 row)

Normal Query

DB

SQL Injection Scenario #2

set ok = execute("SELECT * FROM Users
WHERE user=' " & form("user") & "
' AND pwd="' " & form("pwd") & " '"

) ;

1f not ok.EOF
login success

else fail;

SQL Injection Scenario #2

e Supposeuser=" ' OR 1=1 -- " (URL encoded)

* Then scripts does:

- ok = execute(" SELECT * FROM Users
WHERE user= '' OR 1=1 -- .. ")
— The “--" causes rest of line to be ignored.

— Now ok .EOF is always false and login succeeds.

 The bad news: easy login to many sites this way.

Besides logging in, what else can attacker do?

SQL Injection Scenario #2

e Suppose user =
“ ', DROP TABLE Users-—- ?

* Then script does:

ok = execute ("SELECT * FROM Users
WHERE user= ''; DROP TABLE Users—— ..

")

SQL Injection Scenario #2

* Add query to create another account with
password, or reset a password

— user = V% ', INSERT INTO TABLE
Users ('"attacker', 'attacker
secret'’) ”

* And pretty much everything that can be done by
running a query on the DB!

SQL Injection Demo

&
CardSystems Attack =

TR
X

e CardSystems
— credit card payment processing company

— SQL injection attack in June 2005
— put out of business

* The Attack
— 263,000 credit card #s stolen from database
— credit card #s stored unencrypted
— 43 million credit card #s exposed

Anonymous speaks the inside story of the HBGary hack

By Peter Bright | Last updated a ds

The hbgaryfederal.com CMS was susceptible to a kind of attack called . In common with other
CMSes, the hbgaryfederal.com CMS stores its data in an SQL database, retrieving data from that database
with suitable queries. Some queries are fixed—an integral part of the CMS application itself. Others, however,
need parameters. For example, a query to retrieve an article from the CMS will generally need a parameter
corresponding to the article ID number. These parameters are, in turn, generally passed from the Web front-
end to the CMS.

It has been an embarrassing week for security firm HBGary and its HBGary Federal offshoot. HBGary Federal
CEO Aaron Barr thought he had unmasked the hacker hordes of Anonymous and was preparing to name and
shame those responsible for co-ordinating the group's actions, including the denial-of-service attacks that hit
MasterCard, Visa, and other perceived enemies of WikiLeaks late last year.

When Barr told one of those he believed to be an Anonymous ringleader about his forthcoming exposé, the
Anonymous response was swift and humiliating. HBGary's servers were broken into, its e-mails pillaged and
published to the world, its data destroyed, and its website defaced. As an added bonus, a second site owned

SQL Injection Prevention

« Sanitize user input: check or enforce that value/string
that does not have commands of any sort
— Blacklisting: disallow special characters
— Whitelisting: only allow certain types of characters
— Escape input string

SELECT PersonID FROM People WHERE
Username="alice\’; SELECT * FROM People’

You “escape” the SQL parser

Web
Server

SQL Escape Input

query

Parser

commands

DB

SQL Escape Input

* The input string should be interpreted as a
string and not as a special character

* To escape the SQL parser, use backslash in
front of special characters, such as quotes or
backslashes

SQL Parser

* Ifit sees’ it considers a string is starting or ending

* Ifit sees \' it considers it just as a character part of a
string and converts itto °

Example:

SELECT PersonlD FROM People WHERE
Username="alice\’; SELECT * FROM People’

The username will be matched against
alice’; SELECT * FROM People
and no match will be found

* Different parsers have different escape sequences or
API for escaping

SQL Parser: Examples

« What is the string username gets compared to (after SQL
parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

[..] WHERE Username="alice’ alice

[..] WHERE Username="alice\’ syntax error, quote

not closed

[..] WHERE Username=’'alice\’’ alice’

[..] WHERE Username="alice\\’ alice\

because \\ gets converted to \ by the parser

SQL Injection Prevention

* Avoid building a SQL command based on raw user
input, use existing tools or frameworks

« E.g. (1): the Django web framework has built in
sanitization and protection for other common
vulnerabilities

— Django defines a query abstraction layer which
sits atop SQL and allows applications to avoid
writing raw SQL

— The execute function takes a sql query and
replaces inputs with escaped values

 E.g.(2): Or use parameterized/prepared SQL

SQL Prepared Statement

« Builds SQL queries by properly escaping args: ' — \
— Example: Parameterized SQL (ASP.NET 1.1)

— Ensures SQL arguments are properly escaped

SgqlCommand cmd = new SglCommand (

"SELECT * FROM UserTable WHERE

username = (@User AND

password = @Pwd", dbConnection);
cmd.Parameters.Add ("Q@User", Request[Yuser”]);
cmd.Parameters.Add ("@Pwd", Request[“pwd”]);

cmd.ExecuteReader () ;

SQL Prepared Statement

} SELECT / FROM / WHERE |
: '
[AcctNum] [Customer AND J

Fix structure of SQL parse tree. Only allow
user input (?’s) at , ot

SQL Prepared Statement

][SELECT / FROM / WHERE {

l

[AcctNum J [Customer [AND

|
<] =
N —

[Balance][100 J [Username] “BObéLsDtlzzZrTfBLEJ

What happens to the input Bob”; DROP TABLE Customer --7

General Injection Prevention

Similarly to SQL injections:
« Sanitize input from the user!

« Use frameworks/tools that already check user input

Summary

e Injection attacks were and are the most common web
vulnerability

e |tis typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters the
command

e (Can be prevented by sanitizing user input

