
Web Security:
Session management and CSRF

CS 161: Computer Security

Ruta Jawale and Rafael Dutra

July 31, 2019

Slides credit: Raluca Ada Popa, David Wagner, Dan Boneh

Announcements

• Project 3 will be released later today

• Office Hours are moving location! (~8/1)

• Homework 2 due this Friday (8/2)

• Midterm 2 is next Monday (8/5)

– Attend lectures and discussions

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Demo

XSS Prevention

Preventing XSS

• Input validation: check that inputs are of
expected form (whitelisting)
■ Avoid blacklisting; it doesn’t work well

• Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
• HTML parser looks for special characters: < > & ” ’

– <html>, <div>, <script>
– such sequences trigger actions, e.g., running

script
• Ideally, user-provided input string should not contain

special chars
• If one wants to display these special characters in a

webpage without the parser triggering action, one
has to escape the parser

Character Escape sequence

< <

> >

& &

“ "

‘ '

Demo + fix

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Escape user input!

XSS prevention (cont’d):
Content-security policy (CSP)
• Have web server supply a whitelist of the

scripts that are allowed to appear on a page
■ Web developer specifies the domains the browser

should allow for executable scripts, disallowing all
other scripts (including inline scripts)

• Can opt to globally dis-allow script execution

HTTP Cookie

• Apps do not typically store persistent state in client
browsers
– User should be able to login from any browser

• Web application servers are generally "stateless":
– Most web server applications maintain no information

in memory from request to request
• Information typically stored in databases

– Each HTTP request is independent; server can't tell if
2 requests came from the same browser or user.

• Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HTTP is mostly stateless

• A way of maintaining state
Browser GET …

 Server

Browser maintains cookie jar

HTTP response contains

Cookie

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send);

scope

• When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.

• Domain and path inform the browser about which sites to
send this cookie to

GET …
 Server

Browser

Cookie Scope

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send);
secure = (only send over HTTPS);

GET …
 Server

Browser

Secure Cookie

• Secure flag: cookie sent over https only
– https provides secure communication (privacy and

integrity)

scope

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send);
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly = (no JS access);

 Server

Browser

scope

• Expires is expiration date
– Delete cookie by setting “expires” to date in past

• HttpOnly Flag: cookie cannot be accessed by Javascript,
but only sent by browser
– Prevents XSS, not CSRF from stealing cookies

HTTP-Only Cookie

Cookie Policy

Given site A. Rules based on cookie scope:

1. Which cookies can be set?
– Cookies with domain-suffix (aka super domain) of

site A (except TLD)

2. Which cookies can be received?
– Cookies with domain-suffix (aka super domain) and

path prefix of site A

– Check flags as well

Cookie Policy

• The first time a browser connects to a particular web
server, it has no cookies for that web server

• When the web server responds, it includes a
Set-Cookie: header that defines a cookie

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 Server

Browser

Server Sets Cookies

domain: any domain-suffix of URL-hostname, except TLD
path: can be set to anything

example: host = “login.site.com”

⇒ login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

The browser checks if the server may set the cookie, and if not, it will
not accept the cookie.

Web Server Sets Cookie

Whether it will be set, and if so, where it
will be sent to

domain

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Web server at foo.example.com wants to set cookie with domain:

Web Server Sets Cookie Example

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where it
will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Web Server Sets Cookie Example

• A cookie can be accessed in mostly two ways:

– When a user visits a site, the user’s browser

sends automatically relevant cookies

– Javascript can access it via document.cookie

Receiving Cookies

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie has “Secure” flag set]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

 Server

Goal: server only sees cookies in its scope

Browser

Browser Sends Cookie

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/

http://login.site.com/

http://othersite.com/

cookie: userid=u2

cookie: userid=u1, userid=u2

cookie: none

Browser Sends Cookie Example

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /secret
non-secure

http://checkout.site.com/secret/treasure

http://login.site.com/

http://othersite.com/secret

cookie: userid=u2

cookie: userid=u1

cookie: none

Browser Sends Cookie Example

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary order)

Browser Sends Cookie Example

• Setting a cookie in Javascript:
 document.cookie = “name=value; expires=…; ”

• Reading a cookie: alert(document.cookie)
prints string containing all cookies available for

document (based on [protocol], domain, path)
• Deleting a cookie:

document.cookie = “name=; expires= Thu,
01-Jan-70”

document.cookie often used to customize page in Javascript

Client Reads Cookie

Cookie Policy versus
Same-Origin Policy

Recall: Same-Origin Policy

• Granularity of protection for same origin policy
• Origin = protocol + hostname + port

http://coolsite.com:81/tools/info.html

protocol hostname port

• Origin is determined by string matching! If
these match, it is same origin, else it is not.

• Consider Javascript on a page loaded from a
URL U

• If a cookie is in scope for a URL U, it can be
accessed by Javascript loaded on the page
with URL U, unless the cookie has the
httpOnly flag set

Cookie Policy vs SOP

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure
Http-Only

http://checkout.site.com/

http://login.site.com/

http://othersite.com/

cookie: none

cookie: userid=u1

cookie: none

JS on each of these URLs can access all cookies that would be sent for that
URL if the httpOnly flag is not set

Cookie Policy vs SOP Example

• Since the cookie policy and the
same-origin policy are different,
– there are corner cases when one can use

cookie policy to bypass same-origin policy

Indirectly Bypassing SOP using
Cookie Policy

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

 financial.example.com

cookie jar for *.example.com

Browsers maintain a separate cookie jar per
domain group, such as one jar for *.example.com
to avoid one domain filling up the jar and
affecting another domain. Each browser decides
at what granularity to group domains.

 blog.example.com

Cookie domains:

Indirectly Bypassing SOP using
Cookie Policy

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

 financial.example.com

cookie jar for *.example.com

 blog.example.com

 example.com

 example.com

GET

set-cookie:

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Indirectly Bypassing SOP using
Cookie Policy

financial.example.com
web server

blog.example.com
web server

(assume attacker
compromised this web server)

Victim user browser

 example.com

cookie jar for *.example.com

example.com

 example.com

 example.com

Attacker sets many cookies with
domain example.com which
overflows the cookie jar for domain
*.example.com and overwrites
cookies from financial.example.com

Indirectly Bypassing SOP using
Cookie Policy

financial.example.com
web server

Victim user browser

 example.com

cookie jar for *.example.com

example.com

 example.com

 example.com

GET

When Alice visits
financial.example.com, the
browser automatically
attaches the attacker’s
cookies due to cookie
policy (the scope of the
cookies is a domain suffix
of financial.example.com)

Why is this a problem?

Indirectly Bypassing SOP using
Cookie Policy

• Victim thus can login into attackers
account at financial.example.com

• This is a problem because the victim
might think its their account and might
provide sensitive information

• This bypassed same-origin policy
(indirectly) because blog.example.com
influenced financial.example.com

Indirectly Bypassing SOP using
Cookie Policy

• For further details on cookies, checkout
the standard RFC6265 “HTTP State
Management Mechanism”

https://tools.ietf.org/html/rfc6265

• Browsers are expected to implement this
reference, and any differences are
browser specific

RFC6265

Break Time: Ruta Jawale

• Got stuck under the Swiss Alps

Session Management

• A sequence of requests and responses from
one browser to one (or more) sites
– Session can be long (Gmail - two weeks)

 or short

– without session management:

• Session management:
– Authorize user once;
– All subsequent requests are tied to user

users would have to constantly re-authenticate

Sessions

HTTP request: GET /index.html

HTTP response contains:
 WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
 Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

One username and password for a group of users

Historical: HTTP Authentication

• Hardly used in commercial sites

– User cannot log out other than by closing browser
• What if user has multiple accounts?
• What if multiple users on same computer?

– Site cannot customize password dialog

– Confusing dialog to users

– Easily spoofed

HTTP Authentication Problems

Browser Web Site
GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials

Validate
token

Session Tokens

• Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

• Embed in all URL links:
https://site.com/checkout ?

SessionToken=kh7y3b

• In a hidden form field:
 <input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Storing Session Tokens

• Browser cookie:
browser sends cookie with every request,

even when it should not (CSRF)

• Embed in all URL links:
token leaks via HTTP Referer header

 users might share URLs

• In a hidden form field: short sessions only

Better answer: a combination of all of the above (e.g., browser
cookie with CSRF protection using form secret tokens)

Storing Session Tokens

Cross-Site Request Forgery (CSRF)

Top 10 web vulnerabilities

• Allow a user to provide some data which gets
sent with an HTTP POST request to a server

<form action="bank.com/action.php">
First name: <input type="text"

name="firstname">
Last name:<input type="text"

name="lastname">
<input type="submit"

value="Submit"></form>

HTTP POST request bank.com/action.php?firstname=Alice&lastname=Smith

When filling in Alice and Smith, and clicking submit, the browser issues

As always, the browser attaches relevant cookies

HTML Forms

• Server assigns a session token to each user
after they logged in, places it in the cookie

• The server keeps a table of username to
current session token, so when it sees the
session token it knows which user

Consider: Cookie Stores
Session Token

ServerBrowser

POST/login.cgi

Set-cookie: session token

GET/POST…
Cookie: session token

response

Cookie Stores Session Token

Attack Server

Server Victim bank.com

User Victim

establish session

send forged request

visit server receive malicious page

1

2

3

4 (w/ cookie)

cookie for
bank.com
with session token

What can go bad? URL contains transaction action

Cross-Site Request Forgery (CSRF)

• Example:
– User logs in to bank.com

• Session cookie remains in browser state

– User visits malicious site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

– Browser sends user auth cookie with request
• Transaction will be fulfilled

• Problem:
– cookie auth is insufficient when side effects occur

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2E

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2E

Cross-Site Request Forgery (CSRF)

Demo

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF attack

CSRF Defense

• CSRF token

• Referer Validation

• Origin Header Validation
– See discussion

• Others (e.g., custom HTTP Header)

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

CSRF Defense

1. goodsite.com server wants to protect itself, so it
includes a secret token into the webpage (e.g., in forms
as a hidden field)

2. Requests to goodsite.com include the secret
3. goodsite.com server checks that the token embedded in

the webpage is the expected one; reject request if not

Can the token be?

• 123456

• Dateofbirth

No, CSRF token must be hard to guess by the attacker

CSRF Token

● The server stores state that binds the user's CSRF
token to the user's session id

● Embeds CSRF token in every form

● On every request the server validates that the
supplied CSRF token is associated with the user's
session id

● Disadvantage is that the server needs to maintain
a large state table to validate the tokens.

CSRF Token

• When the browser issues an HTTP request, it
includes a referer header that indicates which
URL initiated the request
– Referer header could be used to distinguish

between same site request and cross site request

Referer Validation

Referer Validation

• HTTP Referer header
– Referer: http://www.facebook.com/
– Referer: http://www.attacker.com/evil.html
– Referer:

• Strict policy disallows (secure, less usable)
• Lenient policy allows (less secure, more usable)

✔
��
?

Referer Validation

Privacy Issues with Referer header:
• The referer contains sensitive information that

impinges on the privacy
• The referer header reveals contents of the

search query that lead to visit a website.
• Some organizations are concerned that

confidential information about their corporate
intranet might leak to external websites via
Referer header

Privacy Issue: Referer Validation

• Referer may leak privacy-sensitive
information

http://intranet.corp.apple.com/

projects/iphone/competitors.html

• Common sources of blocking:
– Network stripping by the organization
– Network stripping by local machine
– Stripped by browser for HTTPS -> HTTP transitions
– User preference in browser

Privacy Issue: Referer Validation

• Cookies add state to HTTP
– Cookies are used for session management
– They are attached by the browser automatically to

HTTP requests
• CSRF attacks execute request on benign site

because cookie is sent automatically
• Defenses for CSRF:

– embed unpredicatable token and check it later
– check referer header

Summary

