
Jawale & Dutra
Summer 2019

CS 161
Computer Security Project 1

Due: July 11th, 2019, 11:59PM

Version 20.00.00.00

Preamble

In this project, you will be exploiting a series of vulnerable programs on a virtual machine.
In order to aid in immersion, this project has a story. It is not necessary to read the story
in order to do the problems.

We use a shaded box to denote story which is not necessary for completing the project.

Note: You are only allowed to perform attacks against targets in your own virtual machine.
It is a violation of campus policy and the law when directing attacks against parties who do
not provide their informed consent!

It is a time of rebellion. The evil empire of Caltopia oppresses its people with relentless
surveillance, and the emperor has recently unveiled his latest grim weapon: a supremely
powerful botnet, called Calnet, that aims to pervasively observe the citizenry and squash
their cherished Internet freedoms.

Yet in the enlightened city of Berkeley, a flicker of hope remains. The brilliant Univer-
sity of Caltopia alumnus Neo, famed for his hacking skills, has infiltrated the empire’s
byzantine networks and hacked his way to the very heart of the Calnet source code
repository. As the emperor’s dark lieutenant, Lord Dirks of Leland Junior University,
attempts to hunt him down, Neo feverishly scours the Calnet source code hunting for
weaknesses. He’s in luck! He realizes that Lord Dirks enlisted ill-trained CS students
from Leland Junior University in writing Calnet, and unbeknownst to the empire, the
code is assuredly not memory-safe.

Alas, just as Neo begins to code up some righteous exploits to pwn Calnet’s components,
a barista at the coffeeshop where Neo gets his free WiFi betrays him to Lord Dirks, who
swoops in with a SWAT team to make an arrest. As the thugs smash through the
coffeeshop’s doors, Neo gets off one final tweet for help. Such are his hacking skillz that
he crams a veritable boatload of key information into his final 280 characters, exhorting
the National Berkeley University’s virtuous computer security students to carry forth the
flame of knowledge, seize control of Calnet, and let freedom ring once more throughout
Caltopia . . .

Page 1 of 14

Getting Started

Neo expects your team to develop exploits for 5 vulnerabilities in Calnet’s components.
As they topple you will move closer and closer towards pwning the nefarious botnet.
All you have to go by are your wits, your grit, and Neo’s legacy: guidelines on how to
proceed, and, most precious, a virtual machine (VM) image that contains code samples
from the main Calnet components.

You can work in teams of 1 or 2 students. To begin the project, you will need to set up a
virtual machine. You will need the following programs installed on your computer:

1. VirtualBox

2. A text editor

3. An SSH client (on Windows, use Putty or Git Bash)

On Linux and Mac, you can install these programs from your package manager (e.g., apt or
brew). Open VirtualBox, and download and import the VM image (pwnable-su19.ova) via
File -> Import Applicance.

Make sure your network is configured correctly by clicking your VM’s settings. Under
Network -> Adapter 1, make sure the first NAT adapter is enabled and open the advanced
settings.

Project 1 Page 2 of 14 CS 161 – Summer 2019

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://git-scm.com/download/win
https://drive.google.com/drive/folders/1bHuQpYx4fa2tuPq2hfQkEus_zdKpLwiS?usp=sharing

Click the Port Forwarding button and ensure that you have a rule to forward from 16119 on
your host to port 22 on the VM. The image below shows that port 2222 is being forwarded.
Make sure that yours shows port 16119.

You can now start the VM, in which you will run the vulnerable programs and their exploits.

Project 1 Page 3 of 14 CS 161 – Summer 2019

Customizing

You will now need to customize the virtual machine. Log in to the virtual machine as the
user customizer with the password customizer (same username and password), and follow
the subsequent prompts.

Note that customization requires your partner’s Cal ID. Both you and your partner
should customize your VM using the same IDs (the order of the IDs does not matter).

If you want to do some initial exploration by yourself before you’ve finalized your team, you
can start off using just your ID for this customization step. Once you have your team in
place, you’ll need to start again with a clean VM image customized as mentioned here. Any
exploits you’ve developed for your private VM image will require porting (re-determination
of the addresses to use in them). This should go quickly once you understand the exploit in
the first place.

If the IDs used by the VM are incorrect, you and your partner may fail the autograder tests.
Make sure that you include your EXACT ID number.

Once you have finished customizing your virtual machine, you will receive the username and
password for the first stage.

FAQ

Question: I configured the VM wrong! What do I do?

Answer: Just repeat the steps above. You can customize the VM without losing any of
your files. However after the VM’s customization changed, old exploits you created may no
longer work.

Question: My partner and I configured the VM the same way, but they are not
syncing?

Customizing just means that they are configured the same way, not that they will sync
together. You and your partner are running on two identical, but distinct, VMs. You’ll need
to share your work via some out-of-band process.

Question: I get the error message: “INTERNAL ERROR! POST ON PIAZZA.
MISSING IDENTITY”?

Answer: Try recustomizing the VM. If this fails, make a Piazza post.

Project 1 Page 4 of 14 CS 161 – Summer 2019

The Task

Neo’s intelligence sources revealed that, once broken in the system, the required login
credentials necessary for further access are located inside the system itself. Escalate
your privileges in the machine by reading the credentials for each part, and then logging
into the accounts with more and more authority to carry out your attack.

You know from having watched his YouTube channel that Neo advocates a three-step
approach for breaking into a system:

Reconnaissance. Investigate what software/which services is/are running. Determine
if there is anything you can access. What can you discover about the software? Using
this information you can seek out potential vulnerabilities.

Development. After you have found a vulnerability, you can create an exploit using
the found bugs (generally, as an attacker, this means crafting a malicious input to the
buggy program).

Profit.

Use Neo’s three-step plan to solve the following problems.

For each step, look at the exploit script to determine which executables you need to create
(e.g. egg in question 1). Before invoking exploit, make sure that your executables have the
execute permission set — this can be done using chmod +x filename. For each step, you can
confirm that your solution works by running exploit, which should launch a shell waiting
for input, and then typing commands like whoami and looking for the expected output, the
username for the following problem, in this case. Once you have a working exploit, the
README file will let you see the username and password for the next stage. You can view it
via a command like cat README.

Project 1 Page 5 of 14 CS 161 – Summer 2019

Warnings

Exploit development is fussy business, which means you need to be careful.

Python 3. Neo does not recommend using Python 3, because of the distinction between
unicode bytes and strings. Python 2 doesn’t make this distinction, which makes it signifi-
cantly easier. Alternatively, you can use a different scripting language such as Bash, Perl,
or Ruby, or even write your exploits in C.

Running Without invoke. You should always run executables with invoke, for example:

$./dejavu # bad

$ invoke ./dejavu # good

$ gdb dejavu # bad

$ invoke -d ./dejavu # good

Note that it is not necessary to run exploit or debug-exploit scripts with invoke, since
exploit already uses invoke. For more details, see the appendix.

Changing the VM. Since our grading tool uses the exact same VM that you downloaded,
do not perform any system modifications, only add/upload new content. For
example, do not attempt to recompile the given executables using make! This way you
ensure that your solutions will work with our grading tool and you do not run the risk of
losing unnecessary points.

If you accidentally overwrote a file, you will need to redownload the VM. Alternatively,
you can use the snapshot feature of Virtualbox, and make a snapshot every time you do
something important. Then, you can revert to the snapshot if something breaks

We highly recommend that you test each of your submissions against our autograder, in
order to debug potential issues before the project deadline. To do so, see the Submission
Summary section.

Project 1 Page 6 of 14 CS 161 – Summer 2019

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686

Question 1 Behind the Scenes (10 points)
Begin the project by SSHing into the VM from your local machine: since we use a rule
to forward to port 16119, run the command ssh -p 16119 vsftpd@127.0.0.1 on your
local machine, where vsftpd is the username you obtained in the customization step
above. Use the associated password to log in.

A tweet from Neo assures you that given its hasty development by poorly educated
programmers, Calnet’s components contain a number of memory vulnerabilities.

In the VM that Neo provided, you will find the first code piece located in the home
directory. This is a memory-vulnerable binary with the setuid bit set and is owned by
the user of the next stage, meaning it will run with the effective privileges of user smith.
Therefore exploiting this program will allow you to assume the permissions of smith.

Neo already provided an exploit scaffold that takes a malicious input and feeds it to the
vulnerable program via a script called exploit. You are to continue his work and use
this to spawn a shell. More concretely, write a script called egg that outputs a malicious
buffer to standard out (ie, print in Python). You buffer should, when exploit is called,
inject the following shellcode:

shellcode =

"\x6a\x31\x58\xcd\x80\x89\xc3\x89\xc1\x6a" +

"\x46\x58\xcd\x80\x31\xc0\x50\x68\x2f\x2f" +

"\x73\x68\x68\x2f\x62\x69\x6e\x54\x5b\x50" +

"\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

Note: unless otherwise stated, you will be using the same shellcode for the subsequent
parts to this project as well.

Shellcode is x86 machine code which performs some action–typically spawning a shell
for further attacker interaction. Recall that x86 has little-endian byte order, e.g., the
first four bytes of the above shellcode will appear as 0xcd58316a in the debugger.

To get started, review the material from the lectures and Discussion 1. Neo recommended
that you try to absorb the high-level concepts of exploiting stack overflows rather than
every single line of assembly.

Once you have a shell running with the privileges of user smith, run the command
cat README to learn smith’s password for the next problem.

Project 1 Page 7 of 14 CS 161 – Summer 2019

http://en.wikipedia.org/wiki/Setuid
http://en.wikipedia.org/wiki/Endianness

Submission and Grading. You will submit a script egg, written in your favorite
scripting language, that integrates with the above displayed script exploit. Your script
should inject shellcode to spawn a shell. Make sure it works by running ./exploit.

Our grading tool will log into a clean VM image as user vsftpd and put your submission
into the directory /home/vsftpd. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user smith (10 points).

You must also submit a write up for this question in explanation.pdf that includes a
description of the vulnerability, how it could be exploited, how you determined which
address to jump to, and a detailed explanation of your solution.

This includes GDB output that clearly but succinctly demonstrates the effects of your
exploit (before/after) (5 points). Please keep your write-ups to no more than a page,
excluding GDB outputs and diagrams.

Project 1 Page 8 of 14 CS 161 – Summer 2019

Question 2 Compromising Further (15 points)
SSH into the VM again, using the username smith and the password you learned in the
previous question (the command to run is ssh -p 16119 smith@127.0.0.1).

Calnet uses a sequence of stages to protect intruders from gaining root access. The
inept Leland Junior University programmers actually attempted a half-hearted fix
to address the overt buffer overflow vulnerability from the previous stage. In this
problem you must bypass these mediocre security measures and, again, inject code
that spawns a shell.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the program agent-smith expects (which is
an initial byte specifying the length of the input, followed by the input itself):

Example invocation:

$./generate-file-contents < anderson.txt

Neo realized that this helper script always generates safe files to be used with the buggy
agent-smith program—but nothing prevents you from instead feeding agent-smith an
arbitrary file of your choice. In particular, Neo started a script exploit representing an
initial exploit attempt.

Warning: Note that (the length of) the input filename used affects your stack addresses!
Make sure you take this into account while debugging, and ensure that your exploit works
when running ./exploit. We recommend using the filename anderson.txt.

Submission and Grading. As in the previous question, you will submit a script egg,
written in your favorite scripting language, that integrates with the above displayed
script exploit. Your script should inject shellcode to spawn a shell. Make sure it works
by running ./exploit.

Our grading tool will log into a clean VM image as user smith and put your submission
into the directory /home/smith. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user brown (10 points).

You must also submit a write up for this question in explanation.pdf, that includes the
same type of information as your writeup for Question 1 on Gradescope. (5 points)

Project 1 Page 9 of 14 CS 161 – Summer 2019

Question 3 Deep Infiltration (35 points)
Find the subtle vulnerability in this code, and inject code that spawns a shell. Neo,
again on top of it, started a scaffold called exploit that you should use. It might also
help to review the explanation of invoke given above.

Calnet is a pernicious and invasive piece of malcode. But Lord Dirks undertook all
of his own studies at Leland Junior University, and as such he never really learned
how to count without occasionally screwing it up.

To solve this problem, you might benefit from reading Section 10 of “ASLR Smack &
Laugh Reference” by Tilo Müller. (Although the title suggests that you have to deal
with ASLR, you can ignore any ASLR-related content in the paper for this question.)

Submission and Grading. For this question, you will submit a script arg and a
script egg written in your favorite scripting language. Your code should integrate with
the script exploit as shown above. Make sure your scripts work by running ./exploit.

Our grading tool will log into a clean VM image as user brown and put your submission
into the directory /home/brown. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user oracle (20 points).

You must also submit a write up for this question in explanation.pdf that includes a
description of the vulnerability, how it could be exploited, how you determined which ad-
dress to jump to, and a detailed explanation of your solution. This includes GDB output
that very clearly demonstrates the effects of your exploit (before/after) (15 points).
Please keep your writeups to no more than a page, excluding GDB outputs and diagrams.

Project 1 Page 10 of 14 CS 161 – Summer 2019

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 4 Oracle Exfiltration (25 points)
Lord Dirks has learned from your previous exploits that buffer overflows are bad news.
Rather than rewrite his code to fix this issue, Lord Dirks decides to enable stack canaries
as a ”fool-proof” solution.

Lord Dirks, hiding behind the perceived safety of his canaries, beseeches his oracles
for advice in stopping Neo’s looking threat. Your new job is to steal their prophetic
wisdom, and use it against them.

As usual, your goal is to exploit the poorly-written code to get higher credentials.
Consider reading “Introduction to String Format Vulnerabilities” by Alex Reece. Neo
also managed to provide some assistance, and left you a hint for this problem, in the
/home/oracle directory itself. Be careful, your solution needs to be able to fit in the
space provided by the buffer.

Warning: Alpine Linux (the OS of the VM) uses muscl libc. This does not behave like
glibc, which you may be more familiar with from 61C. In particular, muscl libc treats
string formats like $ differently, so Neo highly recommends avoiding this string format.

muscl libc also treats gets() slightly differently: it writes two null terminators at the
end of the string, instead of the standard one null byte. Be wary of this when debugging.

Submission and Grading. For this question, you will submit a script egg written in
your favorite scripting language. Your code should integrate with the script exploit as
shown above. Make sure your scripts work by running ./exploit.

Our grading tool will log into a clean VM image as user brown and put your submission
into the directory /home/oracle. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user jones (15 points).

You must also submit a write up for this question in explanation.pdf that includes a
description of the vulnerability, how it could be exploited, how you determined which ad-
dress to jump to, and a detailed explanation of your solution. This includes GDB output
that very clearly demonstrates the effects of your exploit (before/after) (10 points).
Please keep your writeups to no more than a page, excluding GDB outputs and diagrams.

Project 1 Page 11 of 14 CS 161 – Summer 2019

http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html

Question 5 The Last Bastion (25 points)
This part of the project enables ASLR. Once you have started this part of the
project ASLR will stay enabled on your VM, you’ll need to restart your VM
if you’d like to go back to the previous parts.

Yo, Berkeley! Your mission, should you choose to accept it, is to bypass the ASLR
protection and spawn a shell with root privileges. Full control of the box . . . and
thus Calnet itself awaits you! Neo didn’t dare hope you might hack your way this
far and this deeply . . . but he could never abandon his dream of freedom.

You should consider reading Section 8 of “ASLR Smack & Laugh Reference” by Tilo
Müller. Neo has also noted that even though ASLR is enabled, position-independent
executables were not enabled. Therefore, the .text segment of the binary is always at
the same spot.

One detail Neo could figure out for you is that the service to exploit listens locally on
TCP port 942. It turns out that the operating system watches the service and restarts
it shortly when it crashes. You have to send the malicious shellcode to that service to
successfully complete this task. To perform the exploit, run exploit. If you succeed in
the exploit, you should see the output root on shell command whoami.

Linux (x86) TCP shell binding to port 11111.

bind_shell =

"\xe8\xff\xff\xff\xff\xc3\x5d\x8d\x6d\x4a\x31\xc0\x99\x6a" +

"\x01\x5b\x52\x53\x6a\x02\xff\xd5\x96\x5b\x52\x66\x68\x2b\x67" +

"\x66\x53\x89\xe1\x6a\x10\x51\x56\xff\xd5\x43\x43\x52\x56\xff" +

"\xd5\x43\x52\x52\x56\xff\xd5\x93\x59\xb0\x3f\xcd\x80\x49\x79" +

"\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89" +

"\xe3\x52\x53\xeb\x04\x5f\x6a\x66\x58\x89\xe1\xcd\x80\x57\xc3"

This should finally suffice to pull off the Final Stage!

The freedom of cybercitizens throughout Caltopia rests in your hands . . .

Submission and Grading. For this question question, you will submit a script egg,
written in your favorite scripting language, that prints the exploit buffer to standard
output. Make sure your scripts work by running ./exploit.

Our grading tool will log into a clean VM image as user jones and put your submission
into the directory /home/jones. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user root (15 points).

You must also submit a write up for this question in explanation.pdf in the same
fashion as for Questions 1–3 (10 points).

Project 1 Page 12 of 14 CS 161 – Summer 2019

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 6 Feedback (optional) (0 points)
If you wish, you may submit feedback at the end of explanation.pdf, with any feedback
you may have about this project. What was the hardest part of this project in terms of
understanding? In terms of effort? (We also, as always, welcome feedback about other
aspects of the class.) Your comments will not in any way affect your grade.

Submission Summary

Submit your team’s writeup explanation.pdf to the assignment “Project 1 Writeup”.

You will need to move your team’s files off the VM and submit them to the “Project 1
Autograder” assignment on Gradescope.

You should not copy and paste your exploits from the VM onto your computer, since this
might insert weird characters which will cause you to fail our autograder. Using scp, create
the following directory tree:

customizer/.customization

vsftpd/egg

smith/egg

brown/arg

brown/egg

oracle/egg

jones/egg

Drag and drop all of these folders onto Gradescope. (Drag and drop all of the folders
directly–do not create a leading folder, such as proj1/.)

Project 1 Page 13 of 14 CS 161 – Summer 2019

Appendix: Note on Execution Environments

Exploit development can lead to serious headaches if you don’t adequately account for fac-
tors that introduce non-determinism into the debugging process. In particular, the stack
addresses in the debugger may not match the addresses during normal execution. This ar-
tifact occurs because the operating system loader places both environment variables and
program arguments before the beginning of the stack:

Stack

program arguments

environment vars

Kernel

0xc0000000

0xbffff???

variable
size

Already installed in the VM you’ll find a small helper utility, invoke, that makes sure
environment and arguments remain at the same location, regardless of whether using the
debugger or not. For example, instead of invoking the program foo directly via ./foo, you
should instead use invoke foo:

$./foo arg1 arg2 # invocation dependent on environment state :-(

$ invoke foo arg1 arg2 # deterministic invocation

$ invoke -d foo arg1 arg2 # deterministic invocation in gdb

$./exploit # deterministic invocation, handled by exploit

You may find it useful to pass an extra environment variable to the program. The -e switch
serves that purpose:

$ invoke -e Y foo arg1 # sets environment variable ENV=Y in foo

You must always use invoke or exploit to launch (or debug via invoke -d) the
provided executables because invoke additionally parameterizes the execution
environment based on the ID you entered during the first boot.

Project 1 Page 14 of 14 CS 161 – Summer 2019

