
Jawale & Dutra
Summer 2019

CS 161
Computer Security Project 2

Design Doc Due: July 22, 2019, 11:59PM

Project Due: July 29, 2019, 11:59PM

Introduction
Storing files on a server and sharing them with friends and collaborators is very useful.
Commercial services like Dropbox or Google Drive are popular examples of a file store
service (with convenient filesystem interfaces). But what if you couldn’t trust the server
you wanted to store your files on? What if you wanted to securely share and collaborate on
files, even if the owner of the server is malicious? Especially since both Dropbox and Google
Drive don’t actually encrypt the user data.

In this project you will use Go to build the functions needed to implement “encrypted
dropbox”, a cryptographically authenticated and secure file store.

Getting Started
For this project, you can work in teams of up to 2 people. We want you to get your hands
dirty designing and implementing your system. There are two parts of this project with a
single deadline.

We provide you a framework off of which to build for this project, located at https://inst.
eecs.berkeley.edu/~cs161/su19/projects/proj2.zip

All of your code should go in proj2.go. We have provided the necessary functions
for encryption and decryption in userlib.go, which you need to fetch with go get

github.com/ryanleh/cs161-p2/userlib. These functions include the following:

• Set, Get, and Delete from the Datastore

• Set and Get from the Keystore

• RSA Key Generation

• RSA Encrypt and Decrypt

• RSA Sign and Verify

• HMAC Creation and Constant-Time Equality Testing

• Argon2 Key Derivation

• AES-CBC Encryption and Decryption

• Secure source of randomness

Page 1 of 12

https://inst.eecs.berkeley.edu/~cs161/su19/projects/proj2.zip
https://inst.eecs.berkeley.edu/~cs161/su19/projects/proj2.zip


You must use Go and the crypto API we provide you for this project. You must
not use any other libraries.

The API makes heavy use of the Google UUID library (documentation can be found here).
UUIDs act like unique names. Below we outline how to randomly generate a UUID and
how to deterministically generate a UUID from a byte slice.

Random sampling a UUID. Suppose you want to obtain a random UUID, we
write:

new UUID := uuid.New()

Deterministic encoding to a UUID To convert a byte slice with ≥ 16 bytes into a UUID,
we write:

(new UUID, ) := uuid.FromBytes(byte slice[:16])

which only takes the first 16 bytes.

Throughout the project you should strive to write clean, secure code.

Setting Up Go
Go is a nice language but an awful name, it makes web searching a pain. So don’t search
for “go xyz”, search for “golang xyz”. Go has similarities to Python like list splicing and C
like pointers, and you definitely want to learn about useful tips before getting started.

Online Tutorial: https://tour.golang.org/welcome/1 Helps you set up Go workspace
from the comfort of your web browser. Definitely do this before you start the project!

Book: https://golang.org/doc/effective_go.html is very good.

Installing: https://golang.org Make sure you use a recent version (at least 1.9).

We will also use some additional external packages that you will have to fetch using
go get, notably github.com/ryanleh/cs161-p2/userlib and github.com/google/uuid.
The userlib package includes both the crypto API for you and a userlib test.go file. That
test file offers a guide for both using the functions and shows how to write a set of tests for
go.

Project 2 Page 2 of 12 CS 161 – Summer 2019

https://godoc.org/github.com/google/uuid
https://tour.golang.org/welcome/1
https://golang.org/doc/effective_go.html
https://golang.org


Secure File Store
Your task is to design and implement a secure file store. This file store can be used to store
your own files securely, or to share your files with other people you trust.

Your implementation should have two properties:

Confidentiality. Any data placed in the file store should be available only to you
and people you share the file with. In particular, the server should not be able to
learn any bits of information of any file you store, nor of the name of any file you
store.

Integrity. You should be able to detect if any of your files have been modified while
stored on the server and reject them if they have been. More formally, you should
only accept changes to a file if the change was performed by either you or someone
with whom you have shared access to the file.

Note on security parameters. It is sufficient that these properties hold with very high
probability (i.e., no more risk than arises from brute forcing well-chosen cryptographic keys).

You are given access to two servers:

1. A storage server, which is untrusted, where you will store your files. It has three
methods:

• DatastoreSet(key UUID, value []byte), which stores value at key

• DatastoreGet(key UUID) (value []byte, ok bool), which returns the
value stored at key and true, or nil and false

• DatastoreDelete(key UUID), which deletes that item from the data store.

2. A public key server, which is trusted, that allows you to receive other users’ public
keys. You have a secure channel to the public key server. It has two methods:

• KeystoreSet(key string, value PublicKeyType), which sets the public
key for your username key to be value

• KeystoreGet(key string), which returns the public key for key

You are not to change the code for either API. If you do, your code will not work
with our autograder and you will get no credit.

The storage server is, in practice, just a key-value store. The files you upload to the server
are strings of text data. The storage server is untrusted—it can perform arbitrary malicious
actions to any data you store there. You should protect the confidentiality and integrity of

Project 2 Page 3 of 12 CS 161 – Summer 2019



any data you store on the server.

We have a few additional functions in the datastore that allow you to manipulate the raw
data under the hood for building tests.

The storage server has one namespace, so anything written by one user can be read or
overwritten by any other user who knows the key. Clients interacting with the storage
server must take care to ensure that their own files are not overwritten by other clients.
Other users or clients might be malicious.

We provide you a framework off of which to build:

• proj2.go

Where you will write your implementation for secure storage. Put all of your code
in this file.

• proj2 test.go

The testing infrastructure for the project. Add tests to this to test your functionality
and security! In your design document describe your tests.

You must use our provided userlib.go API for all of your security-critical operations. Do
not implement your own versions of symmetric (or asymmetric) key operations. This API
has access to all the raw primitives we have taught you. We have provided all the necessary
functions to implement the secure file storage, so carefully examine all functions given to
you in userlib.go.

Your code must not spawn other processes, read or write to the file system, open any
network connections, or otherwise attack the autograder. We will run your code in an
isolated sandbox. You must not add any additional go language imports to your file.
Any adversarial behavior will be seen as cheating.

Your code must not add any global variables, as testing may involve saving the datastore
and keystore, terminating your program, and then restarting it with a restored datastore
and keystore. Your code should also work if the client creates multiple instances of the
User struct for the same user.

Unless specified otherwise, whenever an operation fails, you must return an error value
different from nil and whenever an operation succeds, you must return nil as the error
value. The autograder checks in multiple places if the returned error value is nil to
identify if an operation has failed or succeded.

Project 2 Page 4 of 12 CS 161 – Summer 2019



Part 1: A simple, but secure client
Question 1 Simple Upload/Download (25 points)

Implement a file store with a secure upload/download interface. For Question 1,
your task is to implement the methods InitUser, GetUser, StoreFile, AppendFile,
LoadFile.

The methods must ensure the following properties hold. See RFC 2119 for the
definitions of MUST, MUST NOT, SHOULD, and MAY.

Property 1 InitUser(username string, password string) MUST take the
user’s password, which is assumed to have good entropy but is not necessarily unique
among all the honest users, and use this to help populate the User data structure
(including generating at least one random RSA key), securely store a copy of the
data structure in the data store, register a public key in the keystore, and return the
newly populated user data structure. The user’s name MUST be confidential to the
data store. If anything fails, return its error code. Otherwise, return nil for the error
code.

Property 2 GetUser(username string, password string), if the username
and password are correct this MUST load the appropriate information from the data
store to populate the User data structure or, if the data is corrupted, return an er-
ror. If either the username or password are not correct it MUST return an error.
You MAY return an error that does not distinguish between a bad username, bad
password, or corrupted data.

Property 3 StoreFile(filename string, data []byte) MUST place the value
data at filename in the Datastore so that future LoadFiles for filename return
data. Different users should be allowed to use the same filename without interfering
with each other. However, any person other than the owner of filename MUST
NOT be able to learn even partial information about data or filename with proba-
bility better than random guesses, other than the length of the data written.

Property 4 (Benign Setting) When not under attack by the storage server or
another user, LoadFile(filename string) MUST return the last value stored at
filename by the user or nil if no such file exists. It MUST NOT raise any error.

Property 5 (Attack Setting) LoadFile(filename string) MUST NOT ever
return an incorrect value. A value (excluding nil) is “incorrect” if it is not
one of the values currently or previously stored at filename by the current user.

LoadFile(filename string) MUST raise an error or return nil if under any
attack by the server or other users that successfully corrupts the file. It MUST
return an error if the file has been tampered with but some record of it still exists in
the data store. It MUST return nil if it appears that no value for filename exists
for the user.

Project 2 Page 5 of 12 CS 161 – Summer 2019

https://www.ietf.org/rfc/rfc2119.txt


Property 6 AppendFile(filename string, data []byte) MUST append the
value data at filename so that future LoadFiles for filename return data ap-
pended to the previous contents. AppendFile MAY return an error if some parts of
the file are corrupted.

This append must be efficient. If before the append, the file is 1000TB, and you
input a single byte to AppendFile, you should not need to download or decrypt the
whole file.

Any person other than the owner of filename MUST NOT be able to learn even
partial information about data or filename, apart from the length of data and the
number of appends conducted to the file, with probability better than random guesses.

You may assume file names are alphanumeric (they match the regex [A-Za-z0-9]+).
File names will not be empty. This will be the case for all parts of this project. The
contents of the file can be arbitrary: you must not make any assumptions there. You
may assume usernames consist solely of lower-case letters ([a-z]+).

The autograder does not look at the return value of the StoreFile method.

We have provided an implementation of the storage server—do not change it.

Note that we require you to protect the confidentiality and integrity of both the contents
of the file you store, the name it is stored under, and the owner of the file. A malicious
storage server must not be able to learn either, or change them. The length of the file
doesn’t need to be kept confidential.

An adversary who has access to the datastore’s list of keys may be able to overwrite a
user’s valid data, but any changes should be reported as an error. An adversary who
does not have access to the datastore’s list of keys must not be able to overwrite or
delete files.

While integrity is an intuitively simple property (a user should only accept data they
themselves uploaded at that key), confidentiality has finer points which may not be
obvious at first. Your scheme should be secure even if the adversary can convince a
valid user to encrypt (or decrypt) arbitrary data. (The adversary controls the server.
Moreover, they can trick you into encrypting arbitrary data for them.) Your client is
secure if it satisfies the following scenario:

1. The adversary, who controls the server, constructs two files F0 and F1 of its choice,
with F0 = (name0, value0), F1 = (name1, value1), where name0 and name1 have
the same length, and value0 and value1 have the same length.

2. The adversary sends F0 and F1 to the client, who must choose one of them at
random and upload it.

3. The adversary then sends the client any number of Fi = (namei, valuei) of its
choice, where the only restriction is namei may not be name0 or name1. The client
must upload these.

Project 2 Page 6 of 12 CS 161 – Summer 2019



4. The client provides confidentiality of names and values if, after all this, the ad-
versary cannot tell (with probability > 1/2) whether the client uploaded F0 or
F1.

One specific attack you are not required to handle is that of a rollback attack:
if Alice uploads the file F to the server and then updates it later to F ′ with a second
upload, Alice does not need to detect if the server “rolls back” its state and returns F
when Alice requests the file back. This is why Property 1 is written as it is.

Why do we not require this? Without additional state, it would be impossible. The
server could always rollback to the “empty” state where it contains no data at all, and
return None for every DatastoreGet, and the client would not be able to detect this.

Your client must not assume it can keep any state outside the UserData structure and
that state must either be directly derived from the password and/or loaded from the
datastore.

You must assume that your client can be killed and restarted, and everything should
still work. (For example: you cannot place a dictionary in your client, make StoreFile

insert into the dictionary, make LoadFile get from the dictionary, and claim to be secure
because you send nothing to the Datastore.)

Note: this means if you require temporary symmetric keys, you will need to be able to
save and restore them using only the one high entropy password the client is given.

You do not need to handle the case where two users interact with the server concurrently :
you can assume only one user will interact with the server at any point in time. (That
is, you do not need to worry about implementing locking—if one user has issued an API
call, then no other user does so until that API call completes.)

Hint: One way to simplify key management is by using an HMAC as as a Hash-Based
Key Derivation Function (HKDF).

Project 2 Page 7 of 12 CS 161 – Summer 2019

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF


Part 2: Sharing and revocation
Make sure you read instructions for Part 2 fully before starting. It is likely that
the design of your system for Part 2 will be significantly different from your previous solution
if you did it separately, so consider this during your initial design.

Question 2 Sharing (25 points)
A file store becomes much more interesting when you can use it to share files with
your collaborators. Implement the sharing functionality by implementing the methods
ShareFile() and ReceiveFile().

When Alice wants to share a file with Bob, she will call sharing, err :=

v.ShareFile("fubar", "bob") to obtain a sharing message. Alice will then pass Bob
sharing through an out-of-band channel (e.g., via email). You must not assume that
this channel is secure. A man-in-the-middle might receive or modify the sharing message
after Alice sends it but before Bob receives it.

After Alice passes sharing to Bob, if Bob wishes to accept the file, he will call
b.ReceiveFile("garp", "alice", sharing).1 Bob should now be able to access Al-
ice’s file under the name garp. In other words, Alice accesses the file under the name
fubar; Bob accesses it using the name garp.

sharing must be a string. During grading, we will pass sharing from one client to
another on your behalf. Sharing a document must not require any other communication
between the clients.

Property 7 (Sharing) After m = a.ShareFile(n1, "b"); b.ReceiveFile(n2,

"a", m), user b MUST now have access to file n1 under the name n2. Every user
with whom this file has been shared (including the owner) MUST see any updates
made to this file immediately. To user b, it MUST be as if this file was created by
them: they MUST be able to read, modify, or re-share this file.

This also changes Property 4 and Property 5 from above. A LoadFile() operation
MUST return the last value written by anyone with access to the file (the owner, or
anyone with whom the file was shared). Only those with access to the file should be
able to read or modify it.

Sharing is tricky. Note that both filenames refer to the same underlying file, and any
updates performed by anyone who has access to the file should be immediately visible
to all other users with access to the file. By “update”, we are including the case where
a user invokes AppendFile(f, v2) on a file f that was previously uploaded and whose
previous contents were v1. We are also including the case where a user overwrites a
shared file.

1Bob populates the first two arguments himself after he receives what he believes is a valid sharing from
Alice. Consequently, these two arguments cannot be tampered with by the man-in-the-middle attacker.

Project 2 Page 8 of 12 CS 161 – Summer 2019



Sharing should be transitive. If Alice shares a file with Bob who shares it with Carol,
any changes to this file by any of the three should be visible to all three immediately.
Sharing a file with someone who has already received it results in unspecified behavior
(you may do whatever you choose). It is okay if the storage server learns which other
users you have shared a file with.

We require a minimal amount of efficiency: assuming a file (of size m) is shared with n
users, and Alice shares the file with a new user, you may perform a linear (in O(n+m))
number of either public or private key encryption operations. This is simple to achieve:
any reasonable scheme should be at least this efficient. It is possible to do significantly
better—and you are free to do so if you choose—but we will not evaluate you on this.

Your client may only keep state for performance reasons. Your implementation must
work if your client is restarted in between every operation. Any state maintained on
your client must be able to be reconstructed from data that exists on the server. Your
clients may not directly communicate with each other.

Again, you do not need to worry about rollback attacks with sharing. For example, the
server could rollback state and remove a client from receiving updates. You do not have
to mitigate this. But remember, if you do notice any discrepancy during operation, you
should return an error.

Question 3 Revocation (25 points)
Remote collaboration is a difficult thing, and, unfortunately, one of your collaborators
has betrayed you, and you can no longer trust them. You realize that you need to revoke
their access to your files. We will only require the revocation to revoke all other users
access to the file, not just a specific user. This implementation requires much less effort
than one which requires revocation of only a specific user.

Implement the RevokeFile() method, which revokes all other users’ access to a
given file. You can’t stop them from remembering whatever they’ve already learned
or keeping a copy of anything they’ve previously downloaded, but you can stop them
from learning any new information about updates to this file. Only the user who
initially created the file may call RevokeFile().

Property 8 (Revocation) If the original creator of the underlying file calls
RevokeFile(filename string), then afterwards all other users MUST NOT be able
to observe new updates to filename, and anyone with whom other users shared this
file MUST also be revoked. Except for knowing the previous contents of filename, to
other users, it MUST be as if they never had received the file. It is undefined behavior
if someone other than the original creator invokes RevokeFile, but it is acceptable
for this to revoke access for everyone other than the user invoking RevokeFile.

This single property has several hidden implications which may not be clear right away.
Suppose that in the past, Alice granted Bob access to file F , and now Alice revokes

Project 2 Page 9 of 12 CS 161 – Summer 2019



Bob’s access. Then we want all the following to be true subsequently:

1. Bob should not be able to update F ,

2. Bob should not be able to read the updated contents of F (for any updates that
happen after Bob’s access was revoked), and

3. If Bob shared the file with Carol, Carol should also not be able to read or update
F .

4. Bob should not be able to regain access to F by calling ReceiveFile() with Alice’s
previous msg.

Revocation must not require any communication between clients.

You only need to implement functionality to revoke access from all other users.

If Alice shares a file with Bob, and then revokes Bob’s access, it MUST NOT be pos-
sible for Bob to mount a denial of service (DoS) attack on Alice’s file (for example, by
overwriting it with all 0s, or deleting ids).

Similar to Question 2, we will not grade you on efficiency. You may make a linear
number of operations proportional to the size of the file, and the number of users who
have received this file.

All the requirements from the previous parts are carried over to this part. Any other
state stored must be only an optimization: it must be recoverable from state stored on
the server.

As before, you do not need to worry about rollback attacks with revocation. For example,
the server may rollback state and remove a client from receiving updates, or re-share
with an old client. You do not have to mitigate this. But if you do notice any discrepancy
during operation, you should return an error.

Project 2 Page 10 of 12 CS 161 – Summer 2019



Design Document
Write a clear, concise design document to go along with your code. Your design document
should be split into two sections. The first contains the design of your system, and the
choices you made; the second contains an analysis of its security; Your design document
should explain your complete solution, for Questions 1 through 3.

In the first section, summarize the design of your system. Explain the major design
choices you made, including how data is stored on the server. The design should be
written in a manner such that an average 161 student could take it, re-implement your
client, and achieve a grade similar to yours. It should also describe your testing method-
ology in your proj2 test.go file.

If you’re looking for somewhere to get started, you can begin by asking yourself the
following questions:

1. How is each client initialized?

2. How is a file stored on the server?

3. How are file names on the server determined?

4. What is the process of sharing a file with a user?

5. What is the process of revoking a user’s access to a file?

6. How were each of these components tested?

A well-written design receiving full points need not be longer than two pages. You will
lose points if your design is excessively verbose.2

The second part of your design document is a security analysis. Present at least three
concrete attacks that you have come up with and how your design protects against each
attack. You should not need more than one paragraph to explain how your implemen-
tation defends against each attack you present.

2If after writing your design document, you realize you have a 10-page document with 100 lines of code
and think to yourself “My 162 GSI would be proud of this,” you will be disappointed in your grade. That
is not a design document. That is an implementation with comments.

Project 2 Page 11 of 12 CS 161 – Summer 2019



Testing
We have provided a framework for testing for you to add more tests. One of the nice things
about working with Go is that adding tests is extremely easy! You can simply add tests in
the proj2 test.go file and then run go test and all of your new tests will run.

This project is large and complicated, so writing tests is incredibly important in creating a
correct implementation. As such, part of your final score will be the code coverage
of your tests in proj2 test.go. You should write tests which verify functionality as well
as security, and which work on any valid implementation, not just your own. Note that we
grade the code coverage of your tests again our implementation.

You can learn how to test code coverage in Golang here.

Submission and Grading
Your final score on this part of the project will be the minimum of the functionality score
and security score. Each failed security test will lower the security score, weighted by the
impact of the vulnerability.
All tests will be run in a sandbox, and if your code is in any way malicious, we will notice.

Submission Summary
In summary, you must submit the following directory tree for the project

proj2.go

proj2_test.go

design.pdf

feedback.txt (optional)

Project 2 Page 12 of 12 CS 161 – Summer 2019

https://stackoverflow.com/questions/10516662/how-to-measure-code-coverage-in-golang

	Introduction
	Getting Started
	Setting Up Go
	Secure File Store
	Part 1
	Q1: Simple Upload/Download/Append
	Part 2
	Q2: Sharing
	Q3: Revocation
	Design Document
	Testing
	Submission and Grading

