
Jawale & Dutra
Summer 2019

CS 161
Computer Security Discussion 2

July 1st: Software Vulnerabilities

Question 1 TCB (Trusted Computing Base) (10 min)
In lecture, we discussed the importance of a TCB and the thought that goes into de-
signing it. Answer these following questions about the TCB:

1. What is a TCB?

2. What can we do to reduce the size of the TCB? Which security principles are
heavily connected to designing a TCB?

3. What components are included in the (physical analog of) TCB for the following
security goals:

(a) Preventing break-ins to your apartment

(b) Locking up your bike

(c) Preventing people from riding BART for free

(d) Making sure no explosives are present on an airplane

Page 1 of 4

Question 2 Memory Vulnerabilities (25 min)
For the following code, assume an attacker can control the value of basket passed into
eval basket. They cannot input an arbitrary n, however: the value of n is constrained
to correctly reflect the number of elements in basket.

The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three on the next page.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t with at most 32 food items .
7 Returns the number o f low−c a l o r i e items , or −1 on a problem . ∗/
8 int eva l ba sk e t (struct food basket [] , s i z e t n) {
9 struct food good [3 2] ;

10 char bad [1 0 2 4] , cmd [1 0 2 4] ;
11 int i , t o t a l = 0 , ngood = 0 , s i z e bad = 0 ;
12
13 i f (n > 32) return −1;
14
15 for (i = 0 ; i <= n ; ++i) {
16 i f (basket [i] . c a l o r i e s < 100)
17 good [ngood++] = basket [i] ;
18 else i f (basket [i] . c a l o r i e s > 500) {
19 s i z e t l en = s t r l e n (basket [i] . name) ;
20 s np r i n t f (bad + s i ze bad , len , ”%s ” , basket [i] . name) ;
21 s i z e bad += len ;
22 }
23
24 t o t a l += basket [i] . c a l o r i e s ;
25 }
26
27 i f (t o t a l > 2500) {
28 const char ∗ fmt = ”health−f a c t o r −−c a l o r i e s %d −−bad−i tems %s” ;
29 f p r i n t f (s tde r r , ” l o t s o f c a l o r i e s ! ”) ;
30 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
31 system (cmd) ;
32 }
33
34 return ngood ;
35 }

Discussion 2 Page 2 of 4 CS 161 – Summer 2019

Reminders:

• snprintf(buf, len, fmt, . . .) works like printf, but instead writes to buf, and
won’t write more than len - 1 characters. It terminates the characters written with
a ‘\0’.

• system runs the shell command given by its first argument.

1. Explanation:

2. Explanation:

3. Explanation:

Discussion 2 Page 3 of 4 CS 161 – Summer 2019

Question 3 C Memory Defenses (10 min)
Mark the following statements as True or False, and justify your solution.

1. Stack canaries can protect against all buffer overflow attacks in the stack.

2. A format-string vulnerability alone can allow an attacker to overwrite a saved return
address even when stack canaries are enabled.

3. If you have data execution prevention/executable space protection/NX bit, an at-
tacker can write code into memory to execute.

4. If you have a non-executable stack and heap, buffer overflows are no longer ex-
ploitable.

5. If you have a non-executable stack and heap, an attacker can use Return Oriented
Programming.

6. If you use a memory-safe language, buffer overflow attacks are impossible.

7. ASLR, stack canaries, and NX bits all combined are insufficient to prevent exploita-
tion of all buffer overflow attacks.

Short answer!

1. What would happen if the stack canary was between the return address and the
saved frame pointer? Assume the canary is impenetrable / un-leakable.

2. What if the canary was above the return address instead?

Discussion 2 Page 4 of 4 CS 161 – Summer 2019

