
Jawale & Dutra
Summer 2019

CS 161
Computer Security Discussion 2

July 1st: Software Vulnerabilities

Question 1 TCB (Trusted Computing Base) (10 min)
In lecture, we discussed the importance of a TCB and the thought that goes into de-
signing it. Answer these following questions about the TCB:

1. What is a TCB?

2. What can we do to reduce the size of the TCB? Which security principles are
heavily connected to designing a TCB?

3. What components are included in the (physical analog of) TCB for the following
security goals:

(a) Preventing break-ins to your apartment

(b) Locking up your bike

(c) Preventing people from riding BART for free

(d) Making sure no explosives are present on an airplane

Solution:

1. It is the set of hardware and software on which we depend for correct enforce-
ment of policy. If part of the TCB is incorrect, the system’s security properties
can no longer be guaranteed to be true. Anything outside the TCB isn’t relied
upon in any way.

2. Privilege separation and separation of responsibility can help reduce the size
of the TCB. You will end up with more components, but not all of them can
violate your security goals if they break. The size of the TCB can also be
reduced by reducing the application’s dependency on third-party components
and software.

3. (This list is not necessarily complete)

(a) The lock, the door, the walls, the windows, the roof, the floor, you, anyone
who has a key.

(b) The bike frame, the bike lock, the post you lock it to, the ground.

(c) The ticket machines, the tickets, the turnstiles, the entrances, the employ-
ees.

Page 1 of 6

(d) The TSA employees, the security gates, the ”one-way” exit gates, the
fences surrounding the runway area.

Discussion 2 Page 2 of 6 CS 161 – Summer 2019

Question 2 Memory Vulnerabilities (25 min)
For the following code, assume an attacker can control the value of basket passed into
eval basket. They cannot input an arbitrary n, however: the value of n is constrained
to correctly reflect the number of elements in basket.

The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three on the next page.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t with at most 32 food items .
7 Returns the number o f low−c a l o r i e items , or −1 on a problem . ∗/
8 int eva l ba sk e t (struct food basket [] , s i z e t n) {
9 struct food good [3 2] ;

10 char bad [1 0 2 4] , cmd [1 0 2 4] ;
11 int i , t o t a l = 0 , ngood = 0 , s i z e bad = 0 ;
12
13 i f (n > 32) return −1;
14
15 for (i = 0 ; i <= n ; ++i) {
16 i f (basket [i] . c a l o r i e s < 100)
17 good [ngood++] = basket [i] ;
18 else i f (basket [i] . c a l o r i e s > 500) {
19 s i z e t l en = s t r l e n (basket [i] . name) ;
20 s np r i n t f (bad + s i ze bad , len , ”%s ” , basket [i] . name) ;
21 s i z e bad += len ;
22 }
23
24 t o t a l += basket [i] . c a l o r i e s ;
25 }
26
27 i f (t o t a l > 2500) {
28 const char ∗ fmt = ”health−f a c t o r −−c a l o r i e s %d −−bad−i tems %s” ;
29 f p r i n t f (s tde r r , ” l o t s o f c a l o r i e s ! ”) ;
30 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
31 system (cmd) ;
32 }
33
34 return ngood ;
35 }

Discussion 2 Page 3 of 6 CS 161 – Summer 2019

Reminders:

• snprintf(buf, len, fmt, . . .) works like printf, but instead writes to buf, and
won’t write more than len - 1 characters. It terminates the characters written with
a ‘\0’.

• system runs the shell command given by its first argument.

1. Explanation:

Solution: Line 15 has a fencepost error: the conditional test should be i < n
rather than i <= n. This example is also commonly called an off-by-one error,
for obvious reasons. The test at line 13 assures that n doesn’t exceed 32,
but if it’s equal to 32, and if all of the items in basket are “good”, then the
assignment at line 17 will write past the end of good, representing a buffer
overflow vulnerability.

2. Explanation:

Solution: At line 20, there’s an error in that the length passed to snprintf is
supposed to be available space in the buffer, but instead it’s the length of the
string being copied (along with a blank) into the buffer. Therefore by supplying
large names for items in basket, the attacker can write past the end of bad at
this point, again representing a buffer overflow vulnerability.

3. Explanation:

Solution: At line 31, a shell command is run based on the contents of cmd,
which in turn includes values from bad, which in turn is derived from input
provided by the attacker. That input could include shell command characters
such as pipes (‘|’) or command separators (‘;’), facilitating command injection.

Solution: Some more minor issues concern the name strings in basket possibly
not being correctly terminated with ′\0′s, which could lead to reading of memory
outside of basket at line 19 or line 20.

Note that there are no issues with format string vulnerabilities at any of lines 20,
29, or 30. For each of those, the format itself does not include any elements under
the control of the attacker.

Discussion 2 Page 4 of 6 CS 161 – Summer 2019

Question 3 C Memory Defenses (10 min)
Mark the following statements as True or False, and justify your solution.

1. Stack canaries can protect against all buffer overflow attacks in the stack.

Solution:

False, stack canaries can be defeated if they are revealed by information leakage,
or if there is not sufficient entropy, in which case an attacker can guess the value.
Remember, the attack just needs to work once in the real world.

Additionally, not all buffer overflows target the rip: overflows can still modify
local variables (which often encode privileges) without overwriting or bypassing
the stack canary.

2. A format-string vulnerability alone can allow an attacker to overwrite a saved return
address even when stack canaries are enabled.

Solution:

True, with format string vulnerabilities, the attacker can learn the contents of
the stack frame, other parts of memory, and write to other addresses in memory.
Stack canaries won’t save you here. Moreover, format string vulnerabilities can
write, as well as read: a well-crafted %n format is sufficient to overwrite parts
of the stack.

3. If you have data execution prevention/executable space protection/NX bit, an at-
tacker can write code into memory to execute.

Solution:

False, the definition of the NX bit is that it prevents code from being writable
and executable at the same time. An attacker who can write code into memory
cannot execute it.

4. If you have a non-executable stack and heap, buffer overflows are no longer ex-
ploitable.

Solution:

False. While many attacks rely on writing malicious code to memory and then
executing them, other types of attacks which still work in these cases. For
example, overflows that target local variables, or attacks like Return Oriented
Programming (see the next question). If we make writable parts of memory
non-executable, some attacks cannot succeed, but many still may.

Discussion 2 Page 5 of 6 CS 161 – Summer 2019

5. If you have a non-executable stack and heap, an attacker can use Return Oriented
Programming.

Solution:

True, Return Oriented Programming is a technique that uses existing instruc-
tions already in memory to change the original program flow.

6. If you use a memory-safe language, buffer overflow attacks are impossible.

Solution:

True, buffer overflow attacks do not work with memory safe languages.

7. ASLR, stack canaries, and NX bits all combined are insufficient to prevent exploita-
tion of all buffer overflow attacks.

Solution:

True, all of these protections can be overcome. See Aleph One’s article, on
Piazza.

Short answer!

1. What would happen if the stack canary was between the return address and the
saved frame pointer? Assume the canary is impenetrable / un-leakable.

Solution:

An attacker can overwrite the saved frame pointer so that the program uses the
wrong address as the base pointer after it returns, crashing the program.

2. What if the canary was above the return address instead?

Solution:

It doesn’t stop an attacker from overwriting the return address. Although
if an attacker had absolutely no idea where the return address was, it could
potentially detect stack smashing.

Discussion 2 Page 6 of 6 CS 161 – Summer 2019

