Jawale & Dutra CS 161

Summer 2019 Computer Security Discussion 3

July 3rd: Cryptography |

Question 1 Block Cipher Potpourri (20 min)
Answer the following short questions about block ciphers.

1. Are block ciphers IND-CPA?

Solution: No, as mentioned in lecture, block ciphers alone are not IND-CPA
because they are deterministic and will always give the same output for the same
input. The proposed solution is to create schemes using block ciphers that add
entropy to each message such as the IV in CBC (cipher block chaining) or the
nonce in CTR (counter) modes. There is a scheme just using a block cipher
called ECB (electronic codebook) mode where encryption is done on a block by
block basis without incorporating any additional entropy.

2. Which of these are good possible sources of entropy for key generation for a block
cipher?

e The computer’s clock time (assumed in seconds)

e The Parent Process ID & my Process ID & time

Hardware noise generator

Hardware noise generator @ time

101010101... ¢ Hardware noise generator

Solution:

e No, a computer clock counts the number of seconds from a given point in
time (traditionally the epoch of unix), and because of this, the entropy of
such a request is dramatically reduced if you can narrow down the window
of time when such a call was made. If you are able to narrow down the
year in which a call to time was made, the entropy is reduced to 25 bits,
narrowing it down to a month is 22 bits, and narrowing it down to the
day is 17 bits.

e No, time as outlined above is not a sufficient source of entropy. Similarly,
process ID is also insufficient (known OS protocols can make this guess-
able). Adding two or more insufficient sources of entropy does not guar-

Page 1 of 7

antee a sufficient source of entropy. This example was actually inspired by
a previous implementation of Netscape’s SSL and you can read up on the
paper published on its insecurity by our very own David Wagner: https:
//people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

e Yes, the hardware implemented (psuedo) random number generators are
traditionally very strong sources of entropy in today’s computers because
they incorporate a physical source for their randomness. Other great
examples that have been used are phsyical dice rollers, weather patterns,
lava lamps, etc.

e Yes, given a proper source of entropy we can still combine it with a weak
source without losing this randomness. This does rely on the fact that we
are using a one-to-one function such as XOR, otherwise if we had instead
used a bitwise AND or OR, we would have been removing the entropy
provided by the hardware.

e Yes, this is just an extrapolation of the previous example. Even with a
known value being included with our actual source of randomness, if we
remove the 101010101... bitstring, we are still left with enough entropy to
provide us with a good key.

3. Why does a block cipher need to be a permutation?

Solution: A block cipher needs to be one-to-one so that it is invertible, and
if it wasn’t a permutation then more than one input could result in the same
output: this means that a cipher-text couldn’t be decrypted.

4. Show that a random OTP (one-time pad) is IND-KPA.

Solution: Remember that in the IND-KPA game, the adversary only sees the
two plaintexts they provide (M, and M;), and one ciphertext: C. In the case
of one-time pads, specifically:

C:Mb@K

where M, is the plaintext chosen by the challenger, and K is the randomly
generated pad. Consider, now, that the adversary is looking to calculate this
quantity:
P(M, = M,|C)
or, the probability that the plaintext chosen by the challenger is M, given that
they’ve seen a particular ciphertext. Using Baye’s rule we get:
P(My, = My(\C) PMy =M K =C& M)

Discussion 3 Page 2 of 7 CS 161 — Summer 2019

https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

Since K is chosen independently at random:

P(M, = M) - P(K = C & M,)
P(C)

P(M, = M,|C) =

Lastly, remember that b and K are both chosen uniformly at random, and that
since C' = K & M, C is also distributed uniformly over the space (for more on
this, show R ~ R @ ¢ for random variable R, and constant c):
1/2-(1/2)" 1
P(M, = My|C) = ———"— = —
(My = Mo|C) (1/2)" 2
Having seen only C, any challenger has only a fifty-fifty chance of guessing the
correct M.

Discussion 3 Page 3 of 7 CS 161 — Summer 2019

Question 2 Block cipher security and modes of operation (20 min)
As a reminder, the cipher-block chaining (CBC) mode of operation works like this:

Plaintext Plaintext Plaintext
[ENRERNERERRER] ITTTIITTIT [ITTTIITTIT]
Initialization Vector (IV)
OO oaa—— — —
Key block C|p.her Key block mpher Key block cpher
encryption encryption encryption
[EENEEEENEREEE] [NNEENEEENRNEE]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Ciphertext Ciphertext Ciphertext

[ENNENNEREEREE] [EENENNENEREEE] IITTIIITTTT]
block cipher block cipher block cipher
Key decryption Key decryption Key decryption
Initialization Vector (IV)
O —— e e
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

The output of the encryption is the ciphertext concatenated with the IV that was used.

1. Does the initialization vector (IV) have to be non-repeating? Why?

Solution: Yes, a fundamental criteria for IVs is that they cannot repeat. This
prevents CBC from degenerating into a deterministic encryption algorithm
(such as ECB mode). In deterministic encryption schemes, if we encrypt the
same message multiple times, the ciphertexts will be identical each time. Un-
fortunately, deterministic encryption schemes can leak a lot of information.
Consider the example from lecture where the Linux penguin is encrypted using
ECB-mode. Even though all of the colors get mapped to new encrypted values,
we can still clearly see the penguin since pixels of the same color share the exact
same value after encryption.

To see why CBC-mode with a repeating IV becomes deterministic, consider the
simple case of always using an IV of 0 and encrypting the same message twice.
In this scenario, the first ciphertext block will always be Ex(m[0]), which will be
the same value for two identical plaintext messages; this will then propagate to
subsequent blocks and cause all of the ciphertext blocks to become equivalent.

When we use non-repeating IVs for CBC-mode, even if we encrypt the same
message multiple times, CBC-mode will generate distinct and random-looking
ciphertexts each time.

2. Is a non-repeating IV enough? Imagine you sequentially picked IVs from a list of
non-repeating, but publicly-known, numbers, e.g., A Million Random Digits with

Discussion 3 Page 4 of 7 CS 161 — Summer 2019

100,000 Normal Deviates (RAND, 1955).

Say Alice encrypts the one-block long message m; with initialization vector I'V;
to get C and encrypts ms using I'V5 to get Cs. She gives these to Mallory and
challenges her to tell which C' came from which m.

Mallory knows that Alice’s next IV will be I'V3, and can ask Alice to encrypt
messages for her (a chosen plaintext attack). Can Mallory distinguish the two
ciphertexts?

Solution: Yes. Mallory asks Alice for the encryption of m, @& IV} @ I'V3. When
Alice runs CBC, the output will be the block cipher output for m; & IV;. But
that’s just C}! So for CBC an IV must also be unpredictable, which is to say it
has to be kept secret until after the encryption is done.

Thus, IVs for CBC-mode encryption have two necessary criteria: (1) they must
not repeat across messages and (2) they must be unpredictable. It turns out we
can satisfy both criteria (with high probability) if we just generate a random
IV for every message we encrypt.

Discussion 3 Page 5 of 7 CS 161 — Summer 2019

Question 3 PRNGSs and stream ciphers (20 min)
R is a pseudo-random number generator (PRNG), and f is a function that takes as input
128-bit seed s, an integer n, and an integer m, and outputs the m*™ (inclusive) through
m' (exclusive) pseudo-random bits produced by R when it is seeded with seed s:

f(s,m,n) = R(s)[m : n

1. Use f to make a secure symmetric-key encryption scheme. That is, define the key
generation algorithm, the encryption algorithm, and the decryption algorithm. You
have access to 128 bits of entropy. You may also store some small amount of state.

Solution:

e Key generation. Generate a random 128-bit key from your source of
entropy:
K c{0,1}'*#

. Initialize some stored state for j := 0.

e Encryption. Interpret j as the latest index we have used from our PRNG

(notice we started with j := 0). Let L be the number of bits in message
M. Then,
E(K,M)=R(K,j,j+L)® M.

Update the state of j for subsequent encryptions: after every encryption,
7 must be incremented by L.

e Decryption. Define j and L as above. We have

D(K,C) = R(K,j,j+L)® C.

2. Explain how using a block cipher in counter (CTR) mode is similar to the scenario
/ scheme described above.

Solution: CTR mode is similar to a stream cipher mode. It uses the key to
generate a pseudo-random stream of bits. This random stream is then XORed
with the message to form the ciphertext.

In CTR mode, there is no computational dependency between the rounds, which
enables an efficient parallel computation. Additionally, the I'V is replaced with
a nonce and counter.

Nonce and counter are encrypted with key K to produce the random stream
that for a given element of the plaintext P; is XORed with P; to produce the

Discussion 3 Page 6 of 7 CS 161 — Summer 2019

Discussion 3

ciphertext C;. In summary, CTR is defined as:

R; := E(K,Nonce|l|7)
P =C;®R;

where || denotes concatenation.

Page 7 of 7

CS 161 — Summer 2019

