
Jawale & Dutra
Summer 2019

CS 161
Computer Security Discussion 5

Cryptography III
�estion 1 Public-key encryption and digital signature (10 min)

Alice and Bob want to communicate over an insecure network using public-key cryptography.
They know each other’s public key.

(a) Alice receives a message: Hey Alice, it’s Bob. You owe me $100. Plz send ASAP.
The message is encrypted with Alice’s public key.
��estion: Can Alice be sure that this message is from Bob?

Solution: No. Alice’s public key is public. Anyone can encrypt a message under
Alice’s public key, not necessarily Bob.

(b) Bob receives a message: Hey Bob, it’s Alice. I don’t think I owe you $100. You owe me.
The message is digitally signed using Alice’s private key.
��estion: Can Bob be sure that this message is from Alice?

��estion: How does Bob verify this message?

Solution: Yes. Only Alice can create a signature under her key.

Bob can verify it using Alice’s public key.

(c) Alice receives a message: Hey Alice, it’s Bob. Find that $100 in my online wallet, my
password is xxxxxx.
The message is encrypted with Alice’s public key.
Alice decrypted this and tested the password, and it was in fact Bob’s.

��estion: Can an eavesdropper also figure out the password?

Solution: No. The eavesdropper does not have Alice’s private key, which is needed
to decrypt the message.

Page 1 of 5

�estion 2 Encryptionprovides no integrity, signature provides no confidentiality (25 min)
Alice and Bob want to communicate with confidentiality and integrity. They have:

• Symmetric encryption.

– Encryption: Enc(k,m).

– Decryption: Dec(k, c).

• Cryptographic hash function: Hash(m).

• MAC: MAC(k,m).

• Signature: Signsk(m).

They share a symmetric key K and know each other’s public key.

We assume these cryptographic tools do not interfere with each other when used in combina-
tion; i.e., we can safely use the same key for encryption and MAC.

Alice sends to Bob
1. c = Hash(Enc(k,m))
2. c = c1, c2 : where c1 = Enc(k,m) and c2 = Hash(Enc(k,m))
3. c = c1, c2 : where c1 = Enc(k,m) and c2 = MAC(k,m)
4. c = c1, c2 : where c1 = Enc(k,m) and c2 = MAC(k,Enc(k,m))
5. c = Signsk(Enc(k,m))
6. c = c1, c2 : where c1 = Enc(k,m) and c2 = Enc(k, Signsk(m))

(a) Which ones of them can Bob decrypt?

2 1 2 2 2 3 2 4 2 5 2 6

Solution: Bob cannot decrypt Scheme 1 because he cannot invert Hash. Similarly,
he cannot extract the original message from the signature sent in Scheme 5.

The signature does not include the message.

In sum, 2-4, 6.

(b) Consider an eavesdropper Eve, who can see the communication between Alice and Bob.

Which schemes, of those decryptable in (a), also provide confidentiality against Eve?

2 1 2 2 2 3 2 4 2 5 2 6

Solution: Scheme 3 does not provide confidentiality because the MAC is sent in
plaintext. For the same message, the MAC is the same, thus leaky.

In sum, 2, 4, 6.

Discussion 5 Page 2 of 5 CS 161 – Summer 2019

(c) Consider a man-in-the-middle Mallory, who can eavesdrop and modify the communica-
tion between Alice and Bob.

Which schemes, of those decryptable in (a), provide integrity against Mallory?
i.e., Bob can detect any tampering with the message?

2 1 2 2 2 3 2 4 2 5 2 6

Solution: Scheme 2 does not provide integrity as Mallory can forge a message by
sending Bob (c′, Hash(c′)).

In sum, 3, 4, 6.

(d) Many of the schemes above are insecure against a replay a�ack.

If Alice and Bob use these schemes to send many messages, and Mallory remembers an
encrypted message that Alice sent to Bob, some time later, Mallory can send the exact
same encrypted message to Bob, and Bob will believe that Alice sent the message again.

How to modify those schemes with confidentiality & integrity to prevent replay a�ack?

� The first scheme providing confidentiality & integrity is Scheme 2.

The modification is:

� The second scheme providing confidentiality & integrity is Scheme 2.

The modification is:

Solution: Add a non-repeating nonce or a timestamp in the MAC (Scheme 4) or in
the signature (Scheme 6).

In sum, In both 4 and 6, we replace message m with timestamp ‖ m.

Discussion 5 Page 3 of 5 CS 161 – Summer 2019

�estion 3 Why do RSA signatures need a hash? (20 min)
This question explores the design of standard RSA signatures in more depth. To generate RSA
signatures, Alice first creates a standard RSA key pair: (n, e) is the RSA public key and d is
the RSA private key, where n is the RSA modulus. For standard RSA signatures, we typically
set e to a small prime value such as 3; for this problem, let e = 3.

To generate a standard RSA signatureS on a messageM , Alice computesS = H(M)d mod n.
If Bob wants to verify whether S is a valid signature on message M , he simply checks whether
S3 = H(M) mod n holds. d is a private key known only to Alice and (n, 3) is a publicly
known verification key that anyone can use to check if a message was signed using Alice’s
private signing key.

Suppose we instead used a simplified scheme for RSA signatures which skips using a hash
function and instead uses M directly, so the signature S on a message M is S = Md mod n.
In other words, if Alice wants to send a signed message to Bob, she will send (M,S) to Bob
where S = Md mod n is computed using her private signing key d.

(a) With this simplified RSA scheme, how can Bob verify whether S is a valid signature on
message M? In other words, what equation should he check, to confirm whether M was
validly signed by Alice?

Solution: S3 = M mod n.

(b) Mallory learns that Alice and Bob are using the simplified signature scheme described
above and decides to trick Bob into beliving that one of Mallory’s messages is from Alice.
Explain how Mallory can find an (M,S) pair such that S will be a valid signature on M .

You should assume that Mallory knows Alice’s public key n, but not Alice’s private key d.
The message M does not have to be chosen in advance and can be gibberish.

Solution: Mallory should choose some random value to be S and then compute
S3 mod n to find the corresponding M value. This (M,S) pair will satisfy the equa-
tion in part (a).

Alternative solution: Choose M = 1 and S = 1. This will satisfy the equation.

(c) Is the a�ack in part (b) possible against the standard RSA signature scheme (the one
that includes the cryptographic hash function)? Why or why not?

Solution: This a�ack is not possible. A hash function is one way, so the a�ack in
part (b) won’t work: we can pick a random S and cube it, but then we’d need to find
some message M such that H(M) is equal to this value, and that’s not possible since
H is one-way.

Comment: This is why the real RSA signature scheme includes a hash function:

Discussion 5 Page 4 of 5 CS 161 – Summer 2019

exactly to prevent the a�ack you’ve seen in this question.

Discussion 5 Page 5 of 5 CS 161 – Summer 2019

